Firoozi, S., Arzac, M. I., García-Plazaola, J. I., Quintanilla, L. G., & Fernández Marín, B. Survival below zero: overlooked aspects of freezing-tolerance in photosynthetic fern tissues. Plant Ecophysiology. 2025, 1(1), 8. doi: https://doi.org/10.53941/plantecophys.2025.100008

The consequences of climate change on the ecophysiology of cryptogams, generally, and in ferns, particularly, are understudied. Phenomena induced by climate change, such as increased frequency of extreme weather events, shifts in precipitation patterns and temperature fluctuations, can significantly impact the physiology and distribution of ferns. The clade of ferns evolved about 400 million years ago and represents the sister group of seed plants. Given their long evolutionary history, ferns offer insights into the resilience and adaptability of plant lineages over geological time scales. Both from an evolutionary and functional perspective, ferns represent a crucial group with intermediate physiological properties between earlier-evolving bryophytes and spermatophytes. Additionally, their life cycle with single-celled reproductive spores and with two independent generations, gametophyte and sporophyte, which have strong anatomical and physiological differences and even different ecological requirements, make ferns a unique case study. While most ferns avoid freezing by living in the tropics or shedding their fronds, wintergreen species deal with sub-zero temperatures in temperate and cold ecosystems. Additionally, the chlorophyll-containing spores and/or gametophytes of many species also face subzero temperature. Despite all this, our current knowledge of low temperature- and freezing-tolerance mechanisms in ferns is minimal. In this review we make a comprehensive compilation and re-evaluation of the available knowledge in this topic with a focus on photosynthetic cells/organs of ferns (class Polypodiopsida). We include some recent and relevant findings, identify major gaps and provide baseline for future lines of research.

Keywords:

cold stress frost gametophyte pteridophyte chlorophyllous spore , sporophyte

Author Biographies

Soniya Firoozi, PhD Student

Department Plant Biology and Ecology. University of the Basque Country (UPV/EHU), Leioa, Spain

Miren Irati Arzac

Department Plant Biology and Ecology. University of the Basque Country (UPV/EHU), Leioa, Spain

José Ignacio García-Plazaola

Department Plant Biology and Ecology. University of the Basque Country (UPV/EHU), Leioa, Spain

Luis García Quintanilla

Global Change Research Institute (IICG). University Rey Juan Carlos, Móstoles, Spain

Beatriz Fernández Marín

Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain

References

  1. Anderson OR. (2021). Physiological ecology of ferns: Biodiversity and conservation perspectives. International Journal of Biodiversity and Conservation, 13(2), 49–63.
  2. Aragon CF, & Pangua E. (2004). Spore viability under different storage conditions in four rupicolous Asplenium L. taxa. American Fern Journal, 94, 28–38. doi: 10.1640/0002-8444(2004)094[0028:SVUDSC]2.0.CO;2
  3. Arora R. (2018). Mechanism of freeze-thaw injury and recovery: A cool retrospective and warming up to new ideas. Plant Science, 270, 301–313. https://doi.org/10.1016/j.plantsci.2018.03.002.
  4. Ashworth EN, & Pearce RS. (2002). Extracellular freezing in leaves of freezing-sensitive species. Planta, 214, 798–805. https://doi.org/10.1007/s00425-001-0683-3.
  5. Augspurger CK. (2013). Reconstructing patterns of temperature, phenology, and frost damage over 124 years: Spring damage risk is increasing. Ecology, 94(1), 41–50. https://doi.org/10.1890/12-0200.1.
  6. Ballesteros D, Estrelles E, Walters C, & Ibars AM. (2011). Effect of storage temperature on green spore longevity for the ferns Equisetum ramosissimum and Osmunda regalis. CryoLetters, 32(2), 89–98.
  7. Ballesteros D, Hill LM, & Walters C. (2017). Variation of desiccation tolerance and longevity in fern spores. Journal of Plant Physiology, 211, 53–62. https://doi.org/10.1016/j.jplph.2017.01.003.
  8. Bannister P, & Fagan B. (1989). The frost resistance of fronds of Blechnum penna-marina in relation to season, altitude, and short-term hardening and dehardening. New Zealand Journal of Botany, 27(3), 471–476. https://doi.org/10.1080/0028825X.1989.10414127.
  9. Bannister P, & Neuner G. (2001). Frost resistance and the distribution of conifers. In Conifer Cold Hardiness (pp. 3–21). Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9650-3_1.
  10. Bannister P, Maegli T, Dickinson KJ, Halloy SR, Knight A, Lord JM, & Spencer KL. (2005). Will loss of snow cover during climatic warming expose New Zealand alpine plants to increased frost damage? Oecologia, 144, 245–256. https://doi.org/10.1007/s00442-005-0087-3.
  11. Bannister P. (1973). A note on some observations on frost damage in the field, with particular reference to various ferns. Transactions of the Botanical Society of Edinburgh, 42(1), 111–113. https://doi.org/10.1080/03746607308685266.
  12. Bannister P. (1984). The seasonal course of frost resistance in some New Zealand pteridophytes. New Zealand Journal of Botany, 22(4), 557–563. https://doi.org/10.1080/0028825X.1984.10425290.
  13. Bannister P. (2003). Are frost hardiness ratings useful predictors of frost damage in the field? A test using damage records from the severe frost in South Otago and Southland, New Zealand, July 1996. New Zealand Journal of Botany, 41(3), 555–569. https://doi.org/10.1080/0028825X.2003.9512869.
  14. Bauer H, Gallmetzer C, & Sato T. (1991). Phenology and photosynthetic activity in sterile and fertile sporophytes of Dryopteris filix-mas (L.) Schott. Oecologia, 86, 159–162. https://doi.org/10.1007/BF00317526.
  15. Ben-Menni Schuler S, Hamza H, Blanca G, Romero-García AT, & Suárez-Santiago VN. (2022). Phylogeographical Analyses of a Relict Fern of Palaeotropical Flora (Vandenboschia speciosa): Distribution and Diversity Model in Relation to the Geological and Climate Events of the Late Miocene and Early Pliocene. Plants, 11(7), 839. https://doi.org/10.3390/plants11070839.
  16. Blake-Mahmud J, Sessa EB, Visger CJ, & Watkins Jr JE. (2024). Polyploidy and environmental stress response: A comparative study of fern gametophytes. New Phytologist, 245(2), 885–898. https://doi.org/10.1111/nph.19969.
  17. Boyle B, Hopkins N, Lu Z, Raygoza Garay JA, Mozzherin D, Rees T, Matasci N, Narro ML, Piel WH, Mckay SJ, & Lowry S. (2013). The taxonomic name resolution service: An online tool for automated standardization of plant names. BMC Bioinformatics, 14, 16. https://doi.org/10.1186/1471-2105-14-16.
  18. Bremer P, & Jongejans E. (2010). Frost and forest stand effects on the population dynamics of Asplenium scolopendrium. Population Ecology, 52(1), 211–222. https://doi.org/10.1007/s10144-009-0143-7.
  19. Briceno VF, Harris-Pascal D, Nicotra AB, Williams E, & Ball MC. (2014). Variation in snow cover drives differences in frost resistance in seedlings of the alpine herb Aciphylla glacialis. Environmental and Experimental Botany, 106, 174–181. https://doi.org/10.1016/j.envexpbot.2014.02.01.
  20. Choat B, Medek DE, Stuart SA, Pasquet-Kok J, Egerton JJ, Salari H, Sack L, & Ball MC. (2011). Xylem traits mediate a trade-off between resistance to freeze–thaw-induced embolism and photosynthetic capacity in overwintering evergreens. New Phytologist, 191(4), 996–1005. https://doi.org/10.1111/j.1469-8137.2011.03772.x.
  21. Cody WJ, & Wagner V. (1981). The Biology of Canadian Weeds.: 49. Equisetum arvense L. Canadian Journal of Plant Science, 61(1), 123–133. https://doi.org/10.4141/cjps81-01.
  22. Cohen J, Pfeiffer K, & Francis JA. (2018). Warm Arctic episodes linked with increased frequency of extreme winter weather in the United States. Nature Communications, 9, 869. https://doi.org/10.1038/s41467-018-02992-9.
  23. Colesie C, Walshaw CV, Sancho LG, Davey MP, & Gray A. (2023). Antarctica’s vegetation in a changing climate. Wiley Interdisciplinary Reviews: Climate Change, 14(1), e810. https://doi.org/10.1002/wcc.810.
  24. Crimp SJ, Zheng B, Khimashia N, Gobbett DL, Chapman S, Howden M, & Nicholls N. (2016). Recent changes in southern Australian frost occurrence: Implications for wheat production risk. Crop and Pasture Science, 67(8), 801–811. https://doi.org/10.1071/CP16056.
  25. Davis SD, Sperry JS, & Hacke UG. (1999). The relationship between xylem conduit diameter and cavitation caused by freezing. American Journal of Botany, 86(10), 1367–1372. doi: 10.2307/2656919
  26. DeMaggio AE, & Stetler DA. (1980). Storage products in spores of Onoclea sensibilis L. American Journal of Botany, 67(4), 452–455. https://doi.org/10.1002/j.1537-2197.1980.tb07672.x.
  27. Dong X, Wang H, Gu J, Wang Y, & Wang Z. (2015). Root morphology, histology and chemistry of nine fern species (pteridophyta) in a temperate forest. Plant and Soil, 393, 215–227. https://doi.org/10.1007/s11104-015-2484-7.
  28. Farrar DR, Dassler C, Watkins JE Jr, & Skelton C. (2008). Gametophyte ecology, Biology and evolution of ferns and lycophytes (Ranker TA, Haufler CH, Eds.) (pp. 222–256). Cambridge University Press. doi: 10.1017/CBO9780511541827.010
  29. Farrar DR. (1978). Problems in the identity and origin of the appalachian vittaria gametophyte, a sporophyteless fern of the eastern united states. American Journal of Botany, 65(1), 1–12. https://doi.org/10.1002/j.1537-2197.1978.tb10828.x.
  30. Farrar DR. (1990). Species and evolution in asexually reproducing independent fern gametophytes. Systematic Botany, 15, 98–111. doi: 10.2307/2419020
  31. Fernández-Marín B, Arzac MI, López-Pozo M, Laza JM, Roach T, Stegner M, & García-Plazaola JI. (2021a). Frozen in the dark: Interplay of night-time activity of xanthophyll cycle, xylem attributes, and desiccation tolerance in fern resistance to winter. Journal of Experimental Botany, 72, 3168–3184. doi: 10.1093/jxb/erab071
  32. Fernández-Marín B, Balaguer L, Esteban R, Becerril JM, & García-Plazaola JI. (2009). Dark induction of the photoprotective xanthophyll cycle in response to dehydration. Journal of Plant Physiology, 166, 1734–1744. doi: 10.1016/j.jplph.2009.04.019
  33. Fernández-Marín B, Neuner G, Kuprian E, Laza JM, García-Plazaola JI, & Verhoeven A. (2018). First evidence of freezing tolerance in a resurrection plant: Insights into molecular mobility and zeaxanthin synthesis in the dark. Physiologia Plantarum, 163, 472–489. doi: 10.1111/ppl.12694
  34. Fernández-Marín B, Roach T, Verhoeven A, & García-Plazaola JI. (2021b). Shedding light on the dark side of xanthophyll cycles. New Phytologist, 230, 1336–1344. doi: 10.1111/nph.17191
  35. Forget SE, Parker EM, & Hughes NM. (2018). Effects of leaf prostration on microclimate and ecophysiology of the evergreen fern, Polystichum acrostichoides. Environmental and Experimental Botany, 154, 80–88. doi: 10.1016/j.envexpbot.2017.10.018
  36. GBIF Secretariat. (2022). GBIF Science Review 2021. https://doi.org/10.35035/w3p0-8729.
  37. Goswami HK, & Sharma US. (1996). Wild Fern Gametophytes with Tracheids. Fern Gazette, 15, 87–90.
  38. Gureyeva II, & Timoshok EE. (2016). Ferns in the present-day periglacial zone of the Central Altai. Contemporary Problems of Ecology, 9, 18–28. doi: 10.1134/S1995425516010054
  39. Haufler CH, Pryer KM, Schuettpelz E, Sessa EB, Farrar DR, Moran R, & Windham MD. (2016). Sex and the single gametophyte: Revising the homosporous vascular plant life cycle in light of contemporary research. BioScience, 66, 928–937. doi: 10.1093/biosci/biw108
  40. Hernández-Cárdenas RA, Mendoza-Ruiz A, Arredondo-Amezcua L, & Steinmann VW. (2019). The Alpine Ferns of the Trans-Mexican Volcanic Belt. American Fern Journal, 109, 11–25. doi: 10.1640/0002-8444-109.1.11
  41. Hill RH. (1976). Cold requirements of several ferns in southeastern Michigan. American Fern Journal, 66, 83–88. doi: 10.2307/1546918
  42. Hutchinson JT, & Langeland KA. (2014). Tolerance of Lygodium microphyllum and L. japonicum spores and gametophytes to freezing temperature. Invasive Plant Science and Management, 7, 328–335. doi: 10.1614/IPSM-D-13-00074.1
  43. Johnson GN, Rumsey FJ, Headley AD, & Sheffield E. (2000). Adaptations to extreme low light in the fern Trichomanes speciosum. New Phytologist, 148, 423–431. doi: 10.1046/j.1469-8137.2000.00772.x
  44. Kappen L. (1964). Untersuchungen über den Jahreslauf der Frost-, Hitze-und Austrocknungsresistenz von Sporophyten einheimischer Polypodiaceen (Filicinae). Flora oder Allgemeine Botanische Zeitung, 155, 123–166. doi: 10.1016/S0367-1615(17)33347-5
  45. Kappen L. (1965). Untersuchungen über die Widerstandsfähigkeit der Gametophyten einheimischer Polypodiaceen gegenüber Frost, Hitze und Trockenheit. Flora oder Allgemeine Botanische Zeitung. Abt. B, Morphologie und Geobotanik, 156, 101–115. doi: 10.1016/S0367-1801(17)30007-8
  46. Kappen L. (1966). Der Einfluß des Wassergehalts auf die Widerstandsfähigkeit von Pflanzen gegenüber hohen und tiefen Temperaturen, untersucht an Blättern einiger Farne und von Ramonda myconi. Flora oder Allgemeine Botanische Zeitung. Abt. A, Physiologie und Biochemie, 156, 427–445. doi: 10.1016/S0367-1836(17)30278-1
  47. Kato Y. (1976). The effect of freezing and organic solvents on viability of chlorophyllous fern spores. Cytologia, 41, 387–393. doi: 10.1508/cytologia.41.387
  48. Kessler M, & Kluge J. (2022). Mountain ferns: What determines their elevational ranges and how will they respond to climate change? American Fern Journal, 112, 285–302. doi: 10.1640/0002-8444-112.4.285
  49. Klinghardt M, & Zotz G. (2021). Abundance and seasonal growth of epiphytic ferns at three sites along a rainfall gradient in Western Europe. Flora, 274, 151749. https://doi.org/10.1016/j.flora.2020.151749.
  50. Kodama Y, Tsuboi H, Kagawa T, & Wada M. (2008). Low temperature-induced chloroplast relocation mediated by a blue light receptor, phototropin 2, in fern gametophytes. Journal of Plant Research, 121, 441–448. doi: 10.1007/s10265-008-0165-9
  51. Konrad W, Schott R, & Roth-Nebelsick A. (2019). A model for extracellular freezing based on observations on Equisetum hyemale. Journal of Theoretical Biology, 478, 161–168. doi: 10.1016/j.jtbi.2019.06.023
  52. Krieg CP, & Chambers SM. (2022). The ecology and physiology of fern gametophytes: A methodological synthesis. Applications in Plant Sciences, 10, e11464. doi: 10.1002/aps3.11464
  53. Lee H, Calvin K, Dasgupta D, Krinner G, Mukherji A, Thorne P, Trisos C, Romero J, Aldunce P, Barrett K, & Blanco G. (2023). Climate Change: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. The Australian National University.
  54. Lee, PH, Huang, YM, Chiou, WL. (2018). Fern Phenology. Current Advances in Fern Research (Fernández H., Ed.). Springer, Cham. https://doi.org/10.1007/978-3-319-75103-0_18.
  55. Li Y, & Shi L. (2014). Effect of desiccation level and storage temperature on green spore viability of Osmunda japonica. Cryobiology, 68, 446–450. doi: 10.1016/j.cryobiol.2014.03.002
  56. Lindsay S, Williams N, & Dyer A. (1992). In Wet Storage of FERN spores: Unconventional but far More Effective. (pp. 285–294). CABI Digital Library.
  57. Lloyd RM, & Klekowski EJ Jr. (1970). Spore germination and viability in Pteridophyta: Evolutionary significance of chlorophyllous spores. Biotropica, 2, 129–137. doi: 10.2307/2989770
  58. Loesch R, Biron U, Patrias T, & Hoeptner B. (2007). Gas exchange and water relations of Asplenium ferns growing on limestone rocks. Nova Hedwigia, 85, 221–236.
  59. López-Pozo M, Fernández-Marín B, García-Plazaola JI, & Ballesteros D. (2018). Desiccation tolerance in ferns: From the unicellular spore to the multi-tissular sporophyte. Current Advances in Fern Research 2018, 401–426. doi: 10.1007/978-3-319-75103-0_19
  60. López-Pozo M, Gasulla F, García-Plazaola JI, & Fernández-Marín B. (2019). Unraveling metabolic mechanisms behind chloroplast desiccation tolerance: Chlorophyllous fern spore as a new promising unicellular model. Plant Science, 281, 251–260. doi: 10.1016/j.plantsci.2018.11.012
  61. Magrini S, & Scoppola A. (2012). First results from conservation studies of chlorophyllous spores of the Royal fern (Osmunda regalis, Osmundaceae). Cryobiology, 64, 65–69. doi: 10.1016/j.cryobiol.2011.10.001
  62. Marini L, Bona E, Kunin WE, & Gaston KJ. (2011). Exploring anthropogenic and natural processes shaping fern species richness along elevational gradients. Journal of Biogeography, 38, 78–88. doi: 10.1111/j.1365-2699.2010.02376.x
  63. McElwain JC. (2011). Ferns: A xylem success story. The New Phytologist, 192, 307–310. doi: 10.1111/j.1469-8137.2011.03865.x
  64. Mellado-Mansilla D, Testo W, Sundue MA, Zotz G, Kreft H, Coiro M, & Kessler M. (2022). The relationship between chlorophyllous spores and mycorrhizal associations in ferns: Evidence from an evolutionary approach. American Journal of Botany, 109, 2068–2081. doi: 10.1002/ajb2.16094
  65. Mellado-Mansilla D, Zotz G, Kreft H, Sundue M, & Kessler M. (2021). The taxonomic distribution of chlorophyllous spores in ferns: An update. American Fern Journal, 111, 150–156. doi: 10.1640/0002-8444-111.2.150
  66. Míguez F, Schiefelbein U, Karsten U, García-Plazaola JI, & Gustavs L. (2017). Unraveling the photoprotective response of lichenized and free-living green algae (Trebouxiophyceae, Chlorophyta) to photochilling stress. Frontiers in Plant Science, 8, 1144. doi: 10.3389/fpls.2017.01144
  67. Mikuła A, Jata K, & Rybczyński JJ. (2009). Cryopreservation strategies for Cyathea australis (R. BR.) domin. CryoLetters, 30, 429–439.
  68. Muller-Thurgau H. (1886). Uber das Gefrieren und Erfrieren der Pflanzen. Landwirtschaftliche Jahrbucher, 15, 435–610.
  69. Neuner G, Ambach D, & Aichner K. (1999). Impact of snow cover on photoinhibition and winter desiccation in evergreen Rhododendron ferrugineum leaves during subalpine winter. Tree Physiology, 19, 725–732. doi: 10.1093/treephys/19.11.725
  70. Neuner G, Erler A, Ladinig U, Hacker J, & Wagner J. (2013). Frost resistance of reproductive tissues during various stages of development in high mountain plants. Physiologia Plantarum, 147, 88–100. doi: 10.1111/j.1399-3054.2012.01616.x
  71. Niklas KJ. (1989). Extracellular freezing in Equisetum hyemale. American Journal of Botany, 76, 627–631. doi: 10.1002/j.1537-2197.1989.tb11355.x
  72. Nitta JH, Schuettpelz E, Ramírez-Barahona S, & Iwasaki W. (2022). An open and continuously updated fern tree of life. Frontiers in Plant Science, 13, 909768. doi: 10.3389/fpls.2022.909768
  73. Nokhsorov VV, Dudareva LV, Senik SV, Chirikova NK, & Petrov KA. (2021). Influence of Extremely Low Temperatures of the Pole of Cold on the Lipid and Fatty-Acid Composition of Aerial Parts of the Horsetail Family (Equisetaceae). Plants, 10, 996. https://doi.org/10.3390/plants10050996.
  74. Noodén LD, & Wagner Jr WH. (1997). Photosynthetic capacity and leaf reorientation in two wintergreen ferns, Polystichum acrostichoides and Dryopteris intermedia. American Fern Journal, 87, 143–149. doi: 10.2307/1547836
  75. Palta JP, & Li PH. (1978a). Examination of ultrastructural freeze-injury in the leaf cells of tender and hardy potato species. Hort Science, 13, 387.
  76. Palta JP, & Li PH. (1978b). Cell membrane properties in relation to freezing injury. Plant Cold Hardiness and Freezing Stress: Mechanisms and Crop Implications, 1, 93–115. doi: 10.1016/B978-0-12-447650-9.50012-5
  77. Peat HJ, Clarke A, & Convey P. (2007). Diversity and biogeography of the Antarctic flora. Journal of Biogeography, 34, 132–146. doi: 10.1111/j.1365-2699.2006.01565.x
  78. Pence VC. (2000). Survival of chlorophyllous and nonchlorophyllous fern spores through exposure to liquid nitrogen. American Fern Journal, 90, 119–126. doi: 10.2307/1547488
  79. *Petrov KA, Sofronova VE, Chepalov VA, Perk AA, & Maksimov TK. (2010). Seasonal changes in the content of photosynthetic pigments in perennial grasses of cryolithic zone. Russian Journal of Plant Physiology, 57, 181–188. https://doi.org/10.1134/S1021443710020044.
  80. Pickett FL. (1914). Some ecological adaptations of certain fern prothallia-Camptosorus rhizophyllus Link., Asplenium platyneuron Oakes. American Journal of Botany, 1, 477–498. doi: 10.1002/j.1537-2197.1914.tb09380.x
  81. Pittermann J, Baer A, & Sang Y. (2021). Primary tissues may affect estimates of cavitation resistance in ferns. New Phytologist, 231, 285–296. doi: 10.1111/nph.17374
  82. Pittermann J, Limm E, Rico C, & Christman MA. (2011). Structure–function constraints of tracheid-based xylem: A comparison of conifers and ferns. New Phytologist, 192, 449–461. doi: 10.1111/j.1469-8137.2011.03817.x
  83. PPG I. (2016). A community-derived classification for extant lycophytes and ferns. Journal of Systematics and Evolution, 54(6), 563–603. doi: 10.1111/jse.12229
  84. Prats KA, & Brodersen CR. (2020). Seasonal coordination of leaf hydraulics and gas exchange in a wintergreen fern. AoB Plants, 12, plaa048. doi: 10.1093/aobpla/plaa048
  85. Pryer KM, Schneider H, Smith AR, Cranfill R, Wolf PG, Hunt JS, & Sipes SD. (2001). Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature, 409, 618–622. doi: 10.1038/35054555
  86. Putzier CC, Polich SB, & Verhoeven AS. (2022). Sustained zeaxanthin-dependent thermal dissipation is induced by desiccation and low temperatures in the fern Polypodium virginianum. Physiologia Plantarum, 174, e13743. doi: 10.1111/ppl.13743
  87. Quintanilla LG, Amigo J, Pangua E, & Pajaron S. (2002). Effect of storage method on spore viability in five globally threatened fern species. Annals of Botany, 90, 461–467. doi: 10.1093/aob/mcf224
  88. Raghavan V. (1989). Developmental Biology of fern Gametophytes. (p. 361). Cambridge University Press. doi: 10.1017/CBO9780511529757
  89. Riedmüller-Schölm HE. (1974). The temperature resistance of Alaskan plants from the continental boreal zone. Flora, 163, 230–250. doi: 10.1016/S0367-2530(17)31741-3
  90. Rønning OI. (1996). The Flora of Svalbard. (p. 184). Norwegian Polar Institute.
  91. Sachs J. (1873). Grundzüge der Pflanzen-Physiologie: Separatabdruck des dritten Buchs der dritten Auflage des Lehrbuchs der Botanik. (https://books.google.com.au/books/about/Grundz%C3%BCge_der_Pflanzen_Physiologie.html?hl=fr&id=ST0ZAAAAYAAJ&redir_esc=y).
  92. Sakai A, & Larcher W. (1987). Frost survival of plants: Response and adaptation to freezing stress (Billings WD, Golley F, Lange OL, Olson JS, Remmert H, Eds.) (pp. 303–326). Springer.
  93. Salazar L, Homeier J, Kessler M, Abrahamczyk S, Lehnert M, Krömer T, & Kluge J. (2015). Diversity patterns of ferns along elevational gradients in Andean tropical forests. Plant Ecology & Diversity, 8, 13–24. doi: 10.1080/17550874.2013.843036
  94. Sato T, & Sakai A. (1980). Freezing resistance of gametophytes of the temperate fern, Polystichum retrosopaleaceum. Canadian Journal of Botany, 58, 1144–1148. doi: 10.1139/b80-141
  95. Sato T, & Sakai A. (1981a). Cold tolerance of gametophytes and sporophytes of some cool temperate ferns native to Hokkaido. Canadian Journal of Botany, 59, 604–608. doi: 10.1139/b81-085
  96. Sato T, & Sakai A. (1981b). Freezing Resistance of Leaf of Pteridophyta Native to Hokkaido with Special Reference to the Phenology of Leaf. Low Temperature Science. Ser. B, Biological Sciences, 38, 15–22.
  97. Sato T. (1982). Phenology and wintering capacity of sporophytes and gametophytes of ferns native to northern Japan. Oecologia, 55, 53–61. doi: 10.1007/BF00386718
  98. Schneller JJ, & Farrar DR. (2022). Photographic analysis of field-monitored fern gametophyte development and response to environmental stress. Applications in Plant Sciences, 10, e11470. doi: 10.1002/aps3.11470
  99. Schott RT, Voigt D, & Roth-Nebelsick A. (2017). Extracellular ice management in the frost hardy horsetail Equisetum hyemale L. Flora, 234, 207–214. doi: 10.1016/j.flora.2017.07.018
  100. Shen H, Jin D, Shu JP, Zhou XL, Lei M, Wei R, Shang H, Wei HJ, Zhang R, Liu L, & Gu YF. (2018). Large-scale phylogenomic analysis resolves a backbone phylogeny in ferns. GigaScience, 7, gix116. doi: 10.1093/gigascience/gix116
  101. Stavdal S. (2020). Flowering and seed production of Cypripedium calceolus in two different habitats in boreal coniferous forests. [Master’s Thesis, Nord Universitet].
  102. Steffen KL, Arora R, & Palta JP. (1989). Relative sensitivity of photosynthesis and respiration to freeze-thaw stress in herbaceous species: Importance of realistic freeze-thaw protocols. Plant Physiology, 89, 1372–1379. doi: 10.1104/pp.89.4.1372
  103. Stokey AG. (1951). Duration of viability of spores of the Osmundaceae. American Fern Journal, 41, 111–115. doi: 10.2307/1545589
  104. Stuckey IH, & Curtis OF. (1938). Ice formation and the death of plant cells by freezing. Plant Physiology, 13, 815. doi: 10.1104/pp.13.4.815
  105. Suissa JS. (2022). Fern fronds that move like pine cones: Humidity-driven motion of fertile leaflets governs the timing of spore dispersal in a widespread fern species. Annals of Botany, 129, 519–528. doi: 10.1093/aob/mcab137
  106. Sundue M, Vasco A, & Moran RC. (2011). Cryptochlorophyllous spores in ferns: Nongreen spores that contain chlorophyll. International Journal of Plant Sciences, 172, 1110–1119. doi: 10.1086/662071
  107. Sutinen ML, Arora R, Wisniewski M, Ashworth E, Strimbeck R, & Palta J. (2001). Mechanisms of frost survival and freeze-damage in nature. Conifer Cold Hardiness, 89–120. doi: 10.1007/978-94-015-9650-3_4
  108. Tessier JT. (2014). Reduced winter snowfall damages the structure and function of wintergreen ferns. American Journal of Botany, 101, 965–969. doi: 10.3732/ajb.1400181
  109. Tessier JT. (2018). Upright fronds of Dryopteris intermedia suffer frost damage and breakage during winter. American Fern Journal, 108, 19–26. doi: 10.1640/0002-8444-108.1.19
  110. Umair M, Hu X, Cheng Q, Ali S, & Ni J. (2023). Distribution patterns of fern species richness along elevations the Tibetan Plateau in China: Regional differences and effects of climate change variables. Frontiers in Plant Science, 14, 1178603. doi: 10.3389/fpls.2023.1178603
  111. Van Hasselt PR, & Van Berlo HA. (1980). Photooxidative damage to the photosynthetic apparatus during chilling. Physiologia Plantarum, 50, 52–56. doi: 10.1111/j.1399-3054.1980.tb02683.x
  112. Verhoeven A, García-Plazaola JI, & Fernández-Marín B. (2018). Shared mechanisms of photoprotection in photosynthetic organisms tolerant to desiccation or to low temperature. Environmental and Experimental Botany, 154, 66–79. doi: 10.1016/j.envexpbot.2017.09.012
  113. Voronkov A, & Ivanova T. (2022). Significance of lipid fatty acid composition for resistance to winter conditions in Asplenium scolopendrium. Biology, 11, 507. doi: 10.3390/biology11040507
  114. Warrington IJ, & Stanley CJ. (1987). Seasonal frost tolerance of some ornamental, indigenous New Zealand plant species in the genera Astelia, Dicksonia, Leptospermum, Metrosideros, Phormium, Pittosporum, and Sophora. New Zealand Journal of Experimental Agriculture, 15, 357–365. https://doi.org/10.1080/03015521.1987.10425582.
  115. Watkins JE Jr, Mack MC, Sinclair TR, & Mulkey SS. (2007). Ecological and evolutionary consequences of desiccation tolerance in tropical fern gametophytes. New Phytologist, 176, 708–717. doi: 10.1111/j.1469-8137.2007.02194.x
  116. Watkins Jr J, & Cardelús CL. (2012). Ferns in an angiosperm world: Cretaceous radiation into the epiphytic niche and diversification on the forest floor. International Journal of Plant Sciences, 173, 695–710. doi: 10.1086/665974
  117. Watt AS. (1981). Further observations on the effects of excluding rabbits from Grassland A in East Anglian Breckland: The pattern of change and factors affecting it (1936–1973). The Journal of Ecology, 69, 509–536. doi: 10.2307/2259681
  118. Weigand A, Abrahamczyk S, Aubin I, Bita-Nicolae C, Bruelheide H, Carvajal-Hernández IC, Cicuzza D, Nascimento da Costa LE, Csiky J, Dengler J, & Gasper ALD. (2020). Global fern and lycophyte richness explained: How regional and local factors shape plot richness. Journal of Biogeography, 47, 59–71. doi: 10.1111/jbi.13782
  119. Whittier DP. (1976). Tracheids, apogamous leaves, and sporophytes in gametophytes of Botrychium dissectum. Botanical Gazette, 137, 237–241. doi: 10.1086/336864
  120. Whittier P. (1996). Extending the viability of Equisetum hyemale spores. American Fern Journal, 86, 114–118. doi: 10.2307/1547150
  121. Wipf S, Sommerkorn M, Stutter MI, Wubs EJ, & Van Der Wal R. (2015). Snow cover, freeze-thaw, and the retention of nutrients in an oceanic mountain ecosystem. Ecosphere, 6, 1–16. doi: 10.1890/ES15-00099.1
  122. Yoneoka K, Fujiwara T, Kataoka T, Hori K, Ebihara A, & Murakami N. (2024). Morphological and functional evolution of gametophytes in epilithic Hymenasplenium murakami-hatanakae (Aspleniaceae): The fifth family capable of producing the independent gametophytes. Journal of Plant Research, 137, 1–14. doi: 10.1007/s10265-024-01553-0
  123. Zhao Q, Gao J, Suo J, Chen S, Wang T, & Dai S. (2015). Cytological and proteomic analyses of horsetail (Equisetum arvense L.) spore germination. Frontiers in Plant Science, 6, 441. doi: 10.3389/fpls.2015.00441
  124. Zhu JJ, Beck E. (1991). Water relations of Pachysandra leaves during freezing and thawing. Plant Physiology, 97, 1146–1153. doi: 10.1104/pp.97.3.1146