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Abstract: A near-exact analytical solution of the statistical Susceptible-Infectious-
Recovered (SIR) epidemics model for a constant ratio k0 of infection to recovery rates
is derived. The derived solution is not of inverse form as the known solutions in the
literature but expresses rather directly the three compartmental fractions S(τ), I(τ)
and R(τ) and thus the rate of new infections j(τ) = S(τ)I(τ) in terms of the single
function U(τ) and the reduced time τ (the time-integrated infection rate), involving
the principal and non-principal branches of Lambert’s function. Exact analytical
formulas for the peak time and the maximum fraction of I(τ) are obtained proving
that the rate of new infections peaks before the fraction of infected persons. Our
analysis is not entirely analytically exact because the reduced time dependence of
the function U(τ) obeying a nonlinear integro-differential equation is only obtained
approximately by expanding a double-exponential function to first-order at small
reduced times, and employing an accurate simple approximation of the principal
Lambert function at large times, respectively.
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1. Introduction

The Susceptible-Infectious-Recovered (SIR) model is the simplest of the compartmental models used for
the mathematical modeling of infectious diseases in order to reproduce or predict the temporal evolution of
infectious diseases in human populations. Originally developed nearly hundred years ago [1, 2] it lately has become
very popular and widespread [3–43] due to its successful applications to the outbreaks of the corona virus in
many countries [44]. The considered population of N ≫ 1 initially susceptible persons is assigned to the three
compartments S(t) (susceptible), I(t) (infectious), or R(t) (recovered/removed). Persons from the population may
progress between these compartments described by the time-dependent infection (a(t) and recovery (µ(t)) rates.

The three respective population fractions obey the sum constraint condition

I(t) + S(t) +R(t) = 1 (1)

at any time, and their temporal evolution is given by the SIR-equations

dS(t)

dt
= −a(t)S(t)I(t), (2a)

dI(t)

dt
= a(t)S(t)I(t)− µ(t)I(t), (2b)

dR(t)

dt
= µ(t)I(t). (2c)
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Besides numerical solutions it is of high interest to derive analytical solutions of the underlying dynamical
SIR-equations. In the most general case of a time-dependent ratio k(t) = µ(t)/a(t) between the recovery and the
infection rate analytical approximate solutions were derived [45, 46] which are very accurate if the cumulative
fraction of infections J(t) = 1− S(t) is small compared to unity at all times.

Recently, new analytical solutions became available [47, 48] for an arbitrary time dependence of the infection
and recovery rates, provided that the ratio between the two rates is independent of time, for two different types
of initial conditions. We refer to these in the following as KSSIR solutions. The utility of the KSSIR solutions
were proven by their successful application to past waves of the corona virus [47]. However, in both cases the
KSSIR solutions could only be given in inverse form t(S) involving an integral, that had to be approximated by
second-order polynomials (see [47] for details). Here we consider an alternative approach to the KSSIR solution
that avoids the inverse form adopting the semi-time initial conditions [49–59]

S(t0) = 1− η, I(t0) = η, R(t0) = 0, (3)

with 0 < η ≃ O(1/N) ≪ 1 denoting the initial seed infection fraction of the population.
Two quantities are of particular interest in studies of infections [60–101]:

(1) the differential rate of newly infected persons from the desease

J̇(t) = a(t)I(t)S(t), (4)

which, with a delay time td of about a week, determines the death rate d(t) = fNj(t − td), where the
mortality rate f is of the order 10−2–10−3 varying for different mutants of the Covid virus and different
countries [102]. J̇(t) also determines the hospitalization rate of seriously infected persons.

(2) the fraction of infected persons I(t) determines the peak time of required clinical resources in the host country
of the considered population [103].

Both quantities J̇(t) and I(t) first increase in time, undergo a maximum and drop at late times. While exact
analytical formulas for the peak time τj and the peak rate of new infections J̇max are available in the KSSIR-model,
several different approximations for the peak time τj and the peak fraction of infected persons Imax have been
derived [103]. It is one purpose of the present study to derive exact expressions for τI and Imax.

2. Reduction of the General SIR-Equations

By introducing the reduced time

τ =

∫ t

t0

dξ a(ξ) (5)

for arbitrary but given real time dependent infection rates a(t) and the ratio

k(τ(t)) =
µ(t)

a(t)
(6)

the SIR-Equations (1)–(3) can be written as

dS(τ)

dτ
= −S(τ)I(τ), (7a)

dI(τ)

dτ
= S(τ)I(τ)− k(τ)I(t), (7b)

dR(τ)

dτ
= k(τ)I(τ), (7c)

1 = S(τ) + I(τ) +R(τ), (7d)

subject to initial conditions

S(τ = 0) = 1− η, I(τ = 0) = η, R(τ = 0) = 0. (8)
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From the invariant J̇(t)dt = j(τ)dτ we obtain with Equation (5) in the form dτ/dt = a(t) for the differential rate
of newly infected persons from the desease

j(τ) =
dJ(τ)

dτ
=

J̇(t)

a(t)
= S(τ)I(τ) = −dS(τ)

dτ
(9)

with the initial value j(0) = η(1− η). The invariant (J(t) = J(τ)) cumulative distribution corresponding to j(τ)

is given by

J(τ) =

∫ τ

−∞
dτ ′j(τ ′) = J(0)−

∫ τ

0

dτ ′
dS(τ ′)

dτ ′ = J(0) + S(0)− S(τ) = 1− S(τ), (10)

where the initial condition J(0) = I(0) = η had been used, in accord with Equation (8).

2.1. Reduction

Equation (7a) readily yields

I(τ) = −d lnS(τ)

dτ
= −dS(τ)/dτ

S(τ)
, (11)

whereas Equation (7b) provides

d ln I(τ)

dτ
= S(τ)− k(τ), (12)

which with the initial condition on I(0) = η integrates to

I(τ) = ηeU(τ), (13)

U(τ) =

∫ τ

0

dx [S(x)− k(x)]. (14)

Combining Equations (11) and (13) with

S(τ) =
dU(τ)

dτ
+ k(τ) (15)

then leads to the single nonlinear differential equation

d

dτ
ln

[
dU(τ)

dτ
+ k(τ)

]
= −ηeU(τ) (16)

for U(τ). Equation (16) integrates to

dU(τ)

dτ
+ k(τ) = (1− η) exp

[
−η

∫ τ

0

dx eU(x)

]
, (17)

where we made use of the initial condition S(0) = 1− η.

2.2. Stationary Ratio

Throughout this study a stationary ratio (6) is assumed, i.e.,

k(τ) = k0 = const. (18)

k0 often is referred to as inverse reproduction number. The derived exact analytical solutions then hold for stationary
infection and recovery rates as well as for any time-dependent infection rate a(t) provided the recovery rate
µ(t) ∝ a(t) has the same time variation while its absolute value can be different.
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For a stationary ratio Equations (14) and (16)–(17) simplify to

U(τ) =

∫ τ

0

dxS(x)− k0τ, (19a)

d

dτ
ln

[
dU(τ)

dτ
+ k0

]
= −ηeU(τ), (19b)

dU(τ)

dτ
+ k0 = (1− η)e−η

∫ τ
0

dx eU(x)

, (19c)

d2U(τ)

dτ2
= −η(1− η)U(τ)e−η

∫ τ
0

dx eU(x)

. (19d)

In earlier work [48] Equations (7) were solved exactly in inverse form as

τ =

∫ J

η

dx

(1− x)
(
x+ k0 ln

1−x
1−η

) , (20)

allowing important conclusions on the final values of the fractions S, I,R (see Appendix A for details). Here we
will follow a different approach avoiding the necessary inversion of solution (20) to derive J(τ). However, the
noted exact results from Appendix A will be used below to check the validity of the alternative solution.

3. Exact Solution

3.1. Ansatz

The ansatz
dU(τ)

dτ
+ k0 = −k0W

(
−aebe

U(τ)
)

(21)

in terms of the Lambert [104] function W (Z) (see Appendix G of ref. [105]) and yet unspecified constants a and b

provides for Equation (19c)
−k0W (−aebe

U(τ)

) = (1− η)e−η
∫ τ
0

dx eU(x)

. (22)

Note that the ansatz (21) is equivalent to

−k0τ =

∫ U dx

1 +W (−aebex)
. (23)

Next, we will determine the constants a and b and thus prove that the ansatz (21) fulfills the differential Equation (19c).
Applying the defining equation for the Lambert function

W (Z) = Ze−W (Z) (24)

yields for Equation (22)

η

∫ τ

0

dx eU(x) = W
(
−aebU(τ)

)
− beU(τ) − ln

(
k0a

1− η

)
. (25)

Hence for its derivative with respect to τ , with

Z(τ) = −aebe
U(τ)

, (26)

one obtains

ηeU(τ) =
dU

dτ

[
d

dU
W (−aebe

U

)− beU
]
=

dU

dτ

[
dZ

dU

d

dZ
W (Z)− beU

]
=

dU

dτ

[
beUZ

d

dZ
W (Z)− beU

]
=

dU

dτ
beU

[
Z

d

dZ
W (Z)− 1

]
=

dU

dτ
beU

[
W (Z)

1 +W (Z)
− 1

]
= −dU

dτ

beU(τ)

1 +W (Z)
, (27)
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where we used the differential equation

Z
dW (Z)

dZ
=

W (Z)

1 +W (Z)
(28)

for Lambert functions. The Equation (27) can be written as

− dτ

dU
=

b/η

1 +W (Z)
, (29)

which is solved by

−τ =
b

η

∫ U dx

1 +W (−aebex)
. (30)

In order for the solution (30) to be consistent with Equation (23) one has to demand that b = η/k0. Consequently,
the exact solution is given by

−k0τ =

∫ U dx

1 +W
(
−ae

ηex

k0

) , (31)

where we still have to determine the constant a and the lower integration limit from the initial condition and we
have to identify the appropriate branch of the Lambert function.

If we re-use U(0) = 0 and U ′(0) = 1 − η − k0, then we can determine a from Equation (27) evaluated at
τ = 0,

1 = − 1− η − k0
k0[1 +W (−aeη/k0)]

, (32)

or equivalently

W (−aeη/k0) = −1− η

k0
. (33)

With Equation (24) written as
Z = WeW , (34)

Equation (33) can be solved for a and provides

a =
(1− η)e−1/k0

k0
= −α, (35)

with α from Equation (A9) in Appendix A.
To conclude, Equation (21) is formally solved by

τ = − 1

k0

∫ U dx

1 +W
(
− 1−η

k0
e−(1−ηex)/k0

) = − 1

k0

∫ U dx

1 +W
(
αe

ηex

k0

) , (36)

but we have to make this more precise, as the Lambert function W has two branches, W0 and W−1.
For positive k0 and η ∈ [0, 1) the argument of the Lambert function is negative because α < 0. Recall that

W (Z) = −1 for Z = −1/e, where the two Lambert branches meet. Let τU and Umax denote the peak time and
peak amplitude of U(τ). The peak amplitude Umax = U(τU ) is determined by the solution of Z = −1/e, and thus
given by

Umax = ln

[
−1 + ln(a)

b

]
= ln

[
1− k0 − k0 ln

1−η
k0

η

]
. (37)

For times up to peak time the solution (36) applies, using the non-principal branch of Lambert’s function,

τ = − 1

k0

∫ U

0

dx

1 +W−1

(
αe

ηex

k0

) (0 ≤ τ ≤ τU ), (38)

with the peak time τU determined by

τU = − 1

k0

∫ Umax

0

dx

1 +W−1

(
αe

ηex

k0

) . (39)
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Over this interval U(τ) monotonically increases from U(0) = 0 to U(τU ) = Umax. Beyond peak time, the solution
is determined by

τ = τU +
1

k0

∫ Umax

U

dx

1 +W0

(
αe

ηex

k0

) (τ ≥ τU ). (40)

Over this remaining interval U(τ) monotonically decreases towards limτ→∞ U(τ) = −∞.
The respective slopes below and above the peak time are obtained by taking the derivative with respect to τ of

Equations (38) and (40) providing

dU

dτ
(τ ≤ τU ) = −k0

[
1 +W−1

(
αe

ηeU(τ)

k0

)]
(41)

and
dU

dτ
(τ ≥ τU ) = −k0

[
1 +W0

(
αe

ηeU(τ)

k0

)]
, (42)

respectively. At very large times the latter approaches

lim
τ→∞

dU

dτ
= −k0[1 +W0(α)], (43)

since limτ→∞ U(τ) = −∞.

3.2. Resulting Fractions

Using the notation Ws(Z) and W ′
s(Z) = dWs(Z)/dZ with s = −1 for τ ≤ τU and s = 0 for τ ≥ τU ,

respectively, and

Z = −1− η

k0
e

ηeU(τ)−1
k0 = αe

ηeU(τ)

k0 = − exp

[
η

k0

(
eU(τ) − eUmax

)
− 1

]
, (44)

with negative α, the solutions Equations (41) and (42) read

dU

dτ
= −k0[1 +Ws(Z)]. (45)

Then, according to Equation (15) one finds

S(τ) = U ′(τ) + k0 = −k0Ws(Z) = −k0Ws

(
αe

ηeU(τ)

k0

)
, (46)

so that with Z∞ = α

S∞ = S(τ = ∞) = −k0W0(α), (47)

in agreement with the exact KSSIR result (A10a). Using

dZ

dτ
=

η

k0

dU(τ)

dτ
eU(τ)Z = −ηZeU(τ) [1 +Ws(Z)] , (48)

one obtains for the first derivative of Equation (46) with respect to τ

dS

dτ
= −k0

dZ

dτ
W ′

s(Z) = ηk0ZeU(τ)[1 +Ws(Z)]W ′
s(Z) = ηk0e

U(τ)Ws(Z), (49)

where we used Lambert’s equation (28). Inserting Equations (46) and (49) yields for Equation (11)

I(τ) = −dS(τ)/dτ

S(τ)
= ηeU(τ) = − d

dτ
ln [U ′(τ) + k0] = − U ′′(τ)

U ′(τ) + k0
, (50)

where we used Equation (19b), thus correctly reproducing the earlier Equation (13). Obviously, the fraction of
infected persons peaks at τU , because of its dependence ∝ eU(τ), and its maximum value is given by

Imax = ηeUmax = 1− k0 − k0 ln
1− η

k0
(51)

6 of 21
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Consequently, one finds for the rate of new infections (9)

j(τ) = S(τ)I(τ) = −U ′′(τ) = η(1− η)U(τ)e−η
∫ τ
0

dx eU(x)

, (52)

where in the last step we used Equation (19d), and the corresponding cumulative fraction of infected persons

J(τ) = 1− S(τ) = 1 + k0Ws(Z) = 1 + k0Ws

(
αe

ηeU(τ)

k0

)
. (53)

Likewise, the sum constraint (7d) leads to

R(τ) = 1− S(τ)− j(τ)

1− J(τ)
= 1− k0 − U ′(τ) +

U ′′(τ)

U ′(τ) + k0
(54)

As U(∞) = −∞ we derive

I∞ = j∞ = 0, (55a)

R∞ = J∞ = 1− S∞ = 1 + k0W0(α), (55b)

reproducing exactly the earlier noted properties (A8) and (A10).
We thus have expressed all quantities of interest, the fractions S, I,R as well as the differential rate of new

infections and its corresponding cumulative number in terms of the function U(τ) and its first and second derivatives.
These expressions are exact. It remains to derive the direct reduced time dependence of the function U(τ) which is
done approximately for large and small times in the following sections.

4. Approximated U(τ ) for Large and Small Times

4.1. Large Times τ ≥ τU

We note that the function Z(τ) in Equation (44) has values

−Z(τU ) = e−1, −Z(τ = ∞) = −α =
(1− η)e−

1
k0

k0
, (56)

so that 0 < |Z(τ = ∞)| < |Z(τU )| < e−1. For such small values of Z we then use as approximation

W0(Z) ≃ (1 + eZ)1/2 − 1, (57)

shown in Figure 1 in comparison to the exact variation. As can be seen the agreement is sufficient, and the
approximation exact at the terminals.

-0.4 -0.3 -0.2 -0.1 0

-1

-0.8

-0.6

-0.4

-0.2

0

Figure 1. Principal branch of Lambert’s function. Approximation (57) (dashed) for W0(Z) (solid).

The approximation (57) then yields for Equation (40)

k0(τ − τU ) ≃
∫ Umax

U

dx√
1 + αe exp(ηex/k0)

=

∫ ηeUmax

k0

ηeU

k0

dy

y
√
1 + αeey

, (58)
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where we substituted y = ηex/k0. The upper integration limit is given by

O(k0) =
ηeUmax

k0
=

1

k0
−
[
1 + ln

1− η

k0

]
≃ 1

k0
+ ln(k0)− 1, (59)

where the second approximation holds for small values of η ≪ 1. It is shown in Figure 2 as a function of k0. The
upper integration limit is thus smaller than unity provided k0(2− ln k0) > 1, corresponding to

k0 > −W−1(−e−2) ≈ 0.32 (60)

in agreement with Figure 2.

0 0.2 0.4 0.6 0.8 1
10

-4

10
-2

10
0

10
2

10
4

Figure 2. Upper bound O(k0) = ηeUmax/k0 versus k0 for η = 10−5. Shown is both the exact expression (black
line) and the approximant (59) (green line). The dashed lines mark O(k0) = 1. The curve is basically unaltered for
smaller η.

For such values of k0 we approximate

1 + αeey ≃ 1 + αe+ αey (61)

to obtain with

κ = − αe

1 + αe
=

[
k0

1− η
e

1
k0

−1 − 1

]−1

=

[
e

ηeUmax

k0 − 1

]−1

=
1

eO(k0) − 1
(62)

for the integral (58)
√
1 + αe k0(τ − τU ) =

k0(τ − τU )√
1 + κ

≃
∫ ηeUmax

k0

ηeU

k0

dy

y
√
1− κy

(63)

With the substitution s = 1− κy one finds for the last equation

k0(τ − τU )√
1 + κ

=

∫ 1− ηκ
k0

eU

1− ηκeUmax
k0

ds

(1− s)
√
s
= 2

[
tanh−1 √s

]1− ηκ
k0

eU

1− ηκeUmax
k0

=

[
ln

1 +
√
s

1−
√
s

]1− ηκ
k0

eU

1− ηκeUmax
k0

(64)

After straightforward algebra Equation (64) leads to

ηκeU(τ)

k0
= 1− tanh2

[
k0(τ − τU )

2
√
1 + κ

+Φ

]
= cosh−2

[
k0(τ − τU )

2
√
1 + κ

+Φ

]
(65)

with the constant Φ defined by

Φ =
1

2
ln

1 +
√
1− ηκeUmax

k0

1−
√
1− ηκeUmax

k0

= tanh−1

√
1− κη

k0
eUmax (66)
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Equation (65) readily provides as approximation at large times

U(τ ≥ τU ) = UH(τ) = ln
k0
ηκ

− 2 ln cosh ζ(τ), (67)

ζ(τ) =
k0(τ − τU )

2
√
1 + κ

+Φ. (68)

We note that Equation (67) correctly provides UH(τU ) = Umax as cosh(ζ(τU )) = coshΦ =
√
k0/ηκeUmax .

The slope of the approximation (67) is

U ′(τ ≥ τU ) = − k0√
1 + κ

tanh ζ(τ), (69)

providing for its limiting slope

lim
τ→∞

dUH

dτ
= − k0√

1 + κ
=

√
k0

[
k0 − (1− η)e1−

1
k0

]
, (70)

which Figure 3 compares favorably well with the exact limiting slope given by Equation (43).

0 0.2 0.4 0.6 0.8 1

-0.3

-0.2

-0.1

0

Figure 3. Limiting slope of U(τ). Exact numerical result using Equation (43) and approximation (70). Follow-
ing [106] the numerical solution of the GSL equations we obtained using the 10th order predictor–corrector Adams
method [107, 108]. Within 0.1% precision, a single-step solver based on a modified Rosenbrock formula of order 2,
implemented by [109] as ode23s in MatlabTM yielded practically indistinguishable results.

It is tempting to use approximation (67) to calculate the corresponding U ′(τ ≥ τU ) as in Equation (69) and
U ′′(τ ≥ τU ) to infer directly the three fractions S, I and R as well as the differential rate j at large times. However,
this produces incorrect results as can be seen with the resulting

S(τ ≥ τU ) = U ′(τ ≥ τU ) + k0 = k0[1−
tanh ζ(τ)√

1 + κ
] (71)

implying

S∞ = k0

(
1− 1√

1 + κ

)
= k0

(
1−

√
1− 1− η

k0
e1−

1
k0

)
≃ 1− η

2k0
e1−

1
k0 (72)

which is finite but slightly disagrees with the exact final value (47), as shown in Figure 4.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Figure 4. Limiting susceptible fraction. Exact (47) and approximate (72) analytic expressions for S∞. For this plot,
η = 10−5, but the situation is very comparable for any η ≪ 1.
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The proper way to continue is to only use Equation (67) as an approximation for U(τ ≥ τU ) and to insert it in
the earlier general expressions for the fractions. With this approximation we obtain for Equation (44)

Z(τ ≥ τU ) = α exp

(
1

κ cosh2 ζ(τ)

)
, (73a)

Z(τU ) = α exp

(
ηeUmax

k0

)
= −1

e
, (73b)

and consequently for the fraction (46)

S(τ ≥ τU ) = 1− J(τ ≥ τU ) = −k0W0(Z(τ ≥ τU ))

= −k0W0

[
α exp

(
1

κ cosh2 ζ(τ)

)]
, (74)

which in contrast to the incorrect Equation (72) now correctly approaches S∞ = −k0W0(α). For later use we note

S(τU ) = −k0W0(−e−1) = k0 (75)

Likewise, the fraction (50) at large times is given by

I(τ ≥ τU ) = k0 ln
Z

α
=

k0

κ cosh2 ζ(τ)
, (76)

reproducing correctly I∞ = 0. The rate of new infections (9) then is

j(τ ≥ τU ) = S(τ ≥ τU )I(τ ≥ τU ) = −
k20W0

[
α exp

(
1

κ cosh2 ζ(τ)

)]
κ cosh2 ζ(τ)

= −k20W0(Z) ln
Z

α
. (77)

4.2. Small Times τ ≤ τU

For small times where U(τ) ≪ 1 we expand the double-exponential function on the right-hand side of
Equation (19c) to first order as

e−η
∫ τ
0

dx eU(x)

≃ 1− η

∫ τ

0

dx eU(x) ≃ 1− η

∫ τ

0

dx [1 + U(x)]

= 1− ητ − η

∫ τ

0

dxU(x), (78)

so that Equation (19c) becomes

dU(τ)

dτ
+ η(1− η)

[
τ +

∫ τ

0

dxU(x)

]
≃ 1− η − k0, (79)

fulfilling the correct initial condition U ′(0) = 1− η − k0. Setting∫ τ

0

dxU(x) = F (τ)− τ +
1− η − k0
η(1− η)

, (80)

Equation (79) reduces to
d2F (τ)

dτ2
+ η(1− η)F (τ) = 0, (81)

with the solution
F (τ) = C1 sin(ρτ) + C2 cos(ρτ), ρ =

√
η(1− η). (82)

Therefore ∫ τ

0

dxU(x) = C1 sin(ρτ) + C2 cos(ρτ)− τ +
1− η − k0
η(1− η)

,

U(τ) = ρ[C1 cos(ρτ)− C2 sin(ρτ)]− 1. (83)
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The two integration constants C1 and C2 are determined by the conditions U(0) = 0 and U(τU ) = Umax yielding

C1 =
1

ρ
, C2 =

cos(ρτU )− 1− Umax

ρ sin(ρτU )
. (84)

Consequently

U(τ ≤ τU ) = UL(τ) = g(τ)− 1, (85a)

g(τ) =
sin ρ(τU − τ) + (1 + Umax) sin(ρτ)

sin(ρτU )
. (85b)

Since U(τU) = Umax guarantees, according to Equations (44) and (46), that Z(τU) = −e−1 implying W−1(Z(τU)) =

−1, with the approximation (85) also S(τU) = k0 is in agreement with Equation (75).
For general small times Equation (44) subjected to the approximation Equation (85a) provides

Z(τ ≤ τU ) = αe
η
k0

eg(τ)−1

, (86)

so that Equation (46) leads to

S(τ ≤ τU ) = 1− J(τ ≤ τU ) = −k0W−1

(
αe

η
k0

eg(τ)−1
)
. (87)

Likewise, the fraction (50) at small times is given by

I(τ ≤ τU ) = ηeg(τ)−1, (88)

reproducing correctly I(τ = 0) = η. The rate of new infections (9) then is

j(τ ≤ τU ) = S(τ ≤ τU )I(τ ≤ τU ) = −ηk0e
g(τ)−1W−1

(
αe

η
k0

eg(τ)−1
)
. (89)

We recall that Equation (39) determines

τU = − 1

k0

∫ Umax

0

dx

1 +W−1

(
αe

ηex

k0

) . (90)

so that for given values η and k0 all parameters are fixed.
In most applications the initial fraction of infected persons η ≃ O(10−5) is very small. Hence for reduced

times τ ≤ τU ≪ η−1/2 one can further approximate

sin(ρτ) ≃ ρτ, sin(ρτU ) ≃ ρτU , sin[ρ(τU − τ)] ≃ ρ(τU − τ) (91)

to obtain for the function (85b)

g(τ ≤ τU ) ≃ 1 +
τ

τU
Umax, (92)

i.e., one may replace g(τ)− 1 in Equations (86)–(89) by τUmax/τU with Umax from Equation (37).

5. Results

5.1. Rate of New Infections

According to Equations (77) and (89) with our earlier notation the rate of new infections at all reduced times
is given by

j(τ) = −k20Ws(Zs) ln
Zs

α
(93)

with

Z−1 = ZL = αe
η
k0

eg(τ)−1

, τ ≤ τU (94a)

Z0 = ZH = αeκ
−1 cosh−2 ζ(τ), τ ≥ τU (94b)
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We note that

ZL

α
∈ [e

η
k0 , eO(k0)] ≥ 1, (95a)

ZH

α
∈ [1, eO(k0)] > 1. (95b)

In the last column of Figure 5 we compare this rate of new infections based on τU from Equation (90) with
the exact numerical solution for η = 10−5 and several choices of the parameter k0 = 0.2, 0.5, 0.8. One notices
excellent agreement between the analytical and numerical curves in all three cases.
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Figure 5. Time evolution of the functions U(τ), I(τ), S(τ), and j(τ). (a) Numerical U(τ) from (14) (solid)
compared with U(τ) from (67) and (85) (dashed), using ζ from Equation (68), Φ from Equation (66), ρ from
(82), κ from (62), τU from (39), Umax from (37). The red bullet marks (τU , Umax). (b) Numerical I(τ) (solid)
compared with I(τ) from Equations (76) and (88). The red bullet marks (τI = τU , Imax) from Equations (39)
and (51). (c) Numerical S(τ) (solid) compared with S(τ) from Equations (87) and (74). The red bullet marks
S∞ (47). (d) Numerical j(τ) (solid) compared with j(τ) from Equations (93) with Zs according to Equation
(94). The red filled bullet marks (τj , jmax) according to Equations (103) and (106). Parameters: η = 10−5 and
k0 ∈ {0.2, 0.5, 0.8} mentioned in the left panel.

The rate of new infections (93) attains its maximum for a vanishing first derivative

dj(τ)

dτ
= −k20

dZs

dτ

d

dZs
[Ws(Zs) ln

Zs

α
]

= ηk20Zse
Us [1 +Ws(Zs]

[
W ′

s(Zs) ln
Zs

α
+

Ws(Zs)

Zs

]
= ηk20e

UsWs(Zs)[1 +Ws(Zs)]

[
1 +

ZsW
′
s(Zs)

W0(Zs)
ln

Zs

α

]
= ηk20e

UsWs(Zs)

[
1 +Ws(Zs) + ln

Zs

α

]
= 0, (96)

where we used Equations (48) and (28). Thus the maximum occurs at ZE given by the solution of

1 +Ws(ZE) + ln
ZE

α
= 0. (97)

Taking the exponential of the last equation leads to

α

e
= ZEe

Ws(ZE) = Ws(ZE)e
2Ws(ZE), (98)
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where we used Equation (24). Setting X = 2Ws(ZE) one can cast Equation (98) into the form

e−X =
e

2α
X (99)

with the solution

X = Ws

(
2α

e

)
(100)

and consequently

Ws(ZE) =
1

2
Ws(α0), α0 =

2α

e
, (101)

where we introduced α0. Applying Equation (34) then provides

ZE =
1

2
Ws(α0)e

1
2Ws(α0) = −1

2

√
α0Ws(α0), (102)

where Equation (24) and
√
−a = ı

√
a for positive values a > 0 has been used. The maximum is then given by

jmax = k20Ws(ZE)[1 +Ws(ZE)] =
k20
4
Ws(α0)[2 +Ws(α0)]

=
k20
4

{
[1 +Ws(α0)]

2 − 1
}
, (103)

where we inserted Equation (101). Equation (103) agrees exactly with the well-known KSSIR expression (A14)
only if s = −1, i.e., only if the non-principal branch of the Lambert functions W−1(α0) in the solution (102) is
chosen. The second solution ZE = −0.5

√
α0Ws(α0) involving the principal branch W0(α0) can be ruled out as it

provides values of ZE/α = ZH/α smaller than unity, as can be seen by the dashed curves in Figure 6 that reside
clearly outside of the possible values of ZH/α according to Equation (95b).
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Figure 6. Extremum of Z(τ). ZE/α (102) versus (a) eα and (b) k0. Shown are the cases of s = −1 (solid) and
s = 0 (dashed). For this plot η = 10−5, but the plots are basically unaffected by η for η ≪ 1.

In Figure 6 we calculate from Equation (102) ZE/α as a function of k0 for η = 10−5. It can be seen that
ZE/α is always greater than unity. Because of the property (95a) this indicates that the peak time of the rate of new
infections τj < τU occurs at times smaller than τU and is given by the solution of the Eq.

e
η
k0

eg(τj)−1

=
W−1(α0)

2α
=

α0e
−W−1(α0)

2α
= e−[1+W−1(α0)], (104)

where we used Equation (24), so that

g(τj)− 1 = ln

[
k0
η

ln
(
−[1 +W−1(α0)]

)]
(105)

With the approximation (92) one obtains

τj =
τU

Umax
ln

[
k0
η

ln
(
−[1 +W−1(α0)]

)]
. (106)

In Figure 7 the ratio τj/τI is displayed as a function of k0 for η = 10−5. The ratio always is smaller than unity
demonstrating that the rate of new infections peaks before the fraction of infected persons in agreement also with
the second and fourth columns in Figure 5.
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Figure 7. Ratio of peak times. Numerical τj/τI = τj/τU (solid black) compared with this ratio using the analytical
expression Equation (A15) with J0 from Equation (A13) (thick green), which is well approximated by the simpler
Equations (93) and (39) with Zs according to Equation (94). For this figure, η = 10−5.

5.2. Peak Time of Fraction of Infected Persons

The peak time τI of the fraction of infected persons is of particular interest [70, 75, 89, 110–120]. According
to Equation (50) this peak time τI coincides with τU given exactly by Equation (39). Consequently, we can compare
this exact peak time with approximants derived before [103]. Figure 8 demonstrates in the first column that the
analytical equation (39) coincides with the numerically calculated peak time τI . While the earlier SK-I approximant
(shown in the third column) provides acceptable agreement in a wide range of parameter values, the MT-approximant
(shown in the second column) is less accurate.
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Figure 8. Comparison of analytical approximants for τI . The top row shows the decadic logarithm of τI (colormap)
versus k0 and η for k0 ≤ 1− 2η, while the 2nd row shows the relative deviation (in %) between the exact τI and
the approximant. The first column displays the analytical τI (39) (here denoted as SL-III), which coincides with
the exact result, the second column the so-called MT-approximant proposed in Ref. [103], and the third column the
SK-I-approximant [103].

6. Summary and Conclusions

We have derived a near-exact analytical solution of the statistical Susceptible-Infectious-Recovered (SIR)
epidemics model for a constant ratio k0 (referred to as KSSIR case) of infection (a(t)) to recovery (µ(t)) rates in
the semi-time case which is particularly appropriate for modeling the temporal evolution of later (than the first)
pandemic waves when a greater population fraction from the first wave has been infected. By introducing the
dimensionless reduced time variable τ =

∫ t

t0
dξ a(ξ) the derived solution holds for stationary rates as well as for the

case of the same real time-dependency of the recovery and infection rates. The accuracy of the analytical solutions
is confirmed by comparison with the exact numerical solutions of the SIR equations. Exact as well as accurately
approximative solutions serve dual important purposes: first, they are suitable benchmarks for numerical codes, and
secondly, they allow us to understand the fundamental behavior and functional patterns of epidemic outbursts as
well as the decisive role of parameters.

The newly developed KSSIR-solution is not of inverse form as the known KSSIR solutions in the literature but
rather directly expresses the three fractions S(τ), I(τ) and R(τ) and thus the rate of new infections j(τ) = S(τ)I(τ)

exactly in terms of the same function U(τ) = −k0τ +
∫ τ

0
dxS(x). With respect to the reduced time these fractions
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depend on two parameters: predominantly on the ratio k0 and only weakly on the usually very small initial fraction
η of infected persons. With respect to real time additionally the predescribed time dependent infection rate a(t)

enters via the reduced time. These exact expressions involve the principal and non-principal branches of the Lambert
functions, which routinely are available in mathematical software packages such as Python (scipy), Excel, Matlab
and Mathematica, above and below the peak time of the function U(τ) which agrees with the peak time of the
rate of infections I(τ). The newly developed solution correctly reproduces all known exact expressions of the
earlier KSSIR solution including the final values of S∞, I∞, and R∞. It also provides exact analytical formulas
for the peak time τI = τU and the maximum fraction Imax. These allow to check the accuracy of earlier derived
approximants for τI . In particular it is shown that the rate of new infections peaks before the fraction of infected
persons.

The derived near-exact solution is not entirely exact because the reduced time dependence of U(τ) obeying
a nonlinear integro-differential equation is only obtained approximately for small and large times with respect to
τU . At small reduced times where U(τ) ≪ 1 the approximation is based on the expansion of a double-exponential
function to first-order, whereas at large reduced times an accurate simple approximation of the principal Lambert
function W0(Z) is employed. The resulting rate of new infections correctly reproduces the known exact maximum
rate of new infections.
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Appendix A. Inverse KSSIR-Solution of Earlier Work

For stationary ratios (18) Equation (7c) immediately integrates to

R(τ) = −k0 ln
S(τ)

1− η
= −k0 ln

[
1− J(τ)

1− η

]
, (A1)

where we used S(τ) = 1− J(τ) from Equation (10) so that also

I(τ) = −d ln[1− J(τ)]

dτ
(A2)

With these expressions the sum constraint (7c) then reads

J(τ) +
d ln[1− J(τ)]

dτ
+ k0 ln

[
1− J(τ)

1− η

]
= 0, (A3)

implying
dJ(τ)

dτ
= [1− J(τ)]

[
J(τ) + k0 ln

1− J(τ)

1− η

]
(A4)
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With the initial condition J(0) = η Equation (A4) readily is solved in inverse form as

τ =

∫ J

η

dx

(1− x)[x+ k0 ln
1−x
1−η ]

. (A5)

This solution (A5) generalizes the known analytical solutions in the literature [1, 2, 121] as it holds for arbitrary
time-dependence of the infection rate a(t). The mentioned known solutions can be reproduced with Equation (A5)
by setting a0(t− t0) on its left-hand side resulting from a constant injection rate a0.

Taking the derivative with respect to τ highlights the fact that the inverse integrand in (A5) is nothing but the
differential rate of newly infected persons in terms of J(τ), i.e.,

j(τ) = (1− J(τ))

[
J(τ) + k0 ln

1− J(τ)

1− η

]
. (A6)

It has been noted before that important exact properties of the KSSIR-solution (A5) can be inferred without doing
the inversion to J(τ).

Appendix A.1. Final And Maximum Values

The solution (A5) indicates that the maximum value J∞ = J(τ = ∞) is attained when the denominator of
the respective integrand vanishes, i.e.,

J∞ + k0 ln

(
1− J∞
1− η

)
= 0. (A7)

Consequently,
J∞ = 1 + k0W0(α), (A8)

where W0 is the principal solution of Lambert’s equation and

α = − (1− η)e−1/k0

k0
. (A9)

The knowledge of J∞ from Equation (A8) immediately yields

S∞ = 1− J∞ = −k0W0(α), (A10a)

R∞ = −k0 ln
1− J∞
1− η

= J∞, (A10b)

I∞ = 1− S∞ −R∞ = 0, , (A10c)

j∞ = j(τ = ∞) = 0. (A10d)

Appendix A.2. Peak Differential Rate

Likewise, the maximum of the differential rate (A6) occurs when the derivative (dj/dJ)J0 = 0 vanishes. With
Equation (A6) one finds

dj

dJ
= 1− 2J − k0[1− ln(1− η)]− k0 ln(1− J), (A11)

yielding for J0 the transcendental equation

2J0 = 1− k0 + k0 ln(1− η)− k0 ln(1− J0), (A12)

which is solved in terms of the non-principal Lambert function as

J0 = 1 +
k0
2
W−1(α0), α0 =

2α

e
, (A13)

with α from (A9). Inserting Equation (A13) in Equation (A6) and making use of Equation (A12) yields for the
maximum value in reduced time

jmax = j(J0) = (1− J0)(1− J0 − k0) =
k20
4

{
[1 +W−1(α0)]

2 − 1
}

(A14)
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According to Equation (A5) the peak time of the differential rate (A6) is given by

τj =

∫ J0

η

dx

(1− x)[x+ k0 ln
1−x
1−η ]

. (A15)

For a maximum to occur at finite positive times τj > 0, the derivative dj/dτ has to be positive at times 0 ≤ τ < τj .
With Equations (A11) and (A12) we readily find

dj

dτ
=

dJ

dτ

dj

dJ
= j

dj

dJ
= j(τ)[1− 2J(τ)− k0(1− ln(1− η))− k0 ln(1− J(τ))]

= j(τ)

[
2(J0 − J(τ))− k0 ln

1− J(τ)

1− J0

]
. (A16)

Since the requirement of a maximum jmax to exist at positive times is identical to the requirement of a positive
dj/dτ at τ = 0, we can insert J(0) = η into the last equality in the first line of Eq. (A16) to find

dj

dτ

∣∣∣∣
τ=0

= η(1− η)[1− 2η − k0] > 0 (A17)

implying

k0 < 1− 2η. (A18)

For inverse reproduction numbers k0 greater than 1− 2η, the daily rate is monotonically decreasing at all times
from its initial value j(0) = η(1 − η) (decay phase). Contrary, for k0 < 1 − 2η the daily rate of newly infected
persons attains a maximum at a finite positive time (peak case). At k0 = 1− 2η the daily rate starts in its maximum
at τ = 0, and then decreases, while S, R and J approach their final values below unity.
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