Downloads

Yu, T., Yu, Y., & Cheng, X. Advances in Research on Tibetan Medicine for Improving Cognitive Dysfunction. International Journal of Drug Discovery and Pharmacology. 2025, 4(2), 100010. doi: https://doi.org/10.53941/ijddp.2025.100010

With the rapid aging of the global population, the incidence of cognitive dysfunction is on the rise. The efficacy of existing clinical medications has been less than satisfactory, leading researchers to explore traditional medicinal practices. Tibetan medicine, a vital segment of traditional medicine, has been extensively utilized for the treatment of mental, psychological, and neurological conditions. Modern clinical and experimental pharmacological studies have shown that Rhodiola L., Terminalia chebula Retz., Sibiraea laevigata (L.) Maxim., Centella asiatica (L.) Urban, Gymnadeniaconopsea (L.) R. Br., Crocus sativus L., Ganoderma lucidum (Curtis) P. Karst., Seventy Flavor Pearl Pills, Twenty-Five Flavor Coral Pills, Ruyi Treasure Pills, and Twenty-Five Flavor Pearl Pills have effects on improving cognitive dysfunction. This review meticulously examines the research progress on these Tibetan medicinal substances for their role in mitigating cognitive dysfunction, with the goal of providing valuable insights for the development of novel therapeutic approaches to cognitive deterioration.

Keywords:

cognitive dysfunction Tibetan medicine Rhodiola Seventy Flavor Pearl Pills

References

  1. Keeler, J.F.; Robbins, T.W. Translating cognition from animals to humans. Biochem. Pharmacol. 2011, 81, 1356–1366. doi: 10.1016/j.bcp.2010.12.028
  2. Ball, H.A.; McWhirter, L.; Ballard, C.; et al. Functional cognitive disorder: dementia’s blind spot. Brain 2020, 143, 2895–2903. doi: 10.1093/brain/awaa224
  3. Roberts, R.; Knopman, D.S. Classification and epidemiology of MCI. Clin. Geriatr. Med. 2013, 29, 753–772. doi: 10.1016/j.cger.2013.07.003
  4. Min, Z.; Yuan, G.S.L. Research Progress on Disease Awareness in Community-Dwelling Patients with Mild Cognitive Impairment. J. Mod. Med. Health 2022, 38, 1723–1727.
  5. Sanford, A.M. Mild Cognitive Impairment. Clin. Geriatr. Med. 2017, 33, 325–337. doi: 10.1016/j.cger.2017.02.005
  6. Ellison, J.M.; Harper, D.G.; Berlow, Y.; et al. Beyond the “C” in MCI: Noncognitive symptoms in amnestic and non-amnestic mild cognitive impairment. CNS Spectr. 2008, 13, 66–72. doi: 10.1017/S1092852900016175
  7. Sen, A.; Capelli, V.; Husain, M. Cognition and dementia in older patients with epilepsy. Brain 2018, 141, 1592–1608. doi: 10.1093/brain/awy022
  8. Wallace, E.R.; Segerstrom, S.C.; van Horne, C.G.; et al. Meta-Analysis of Cognition in Parkinson’s Disease Mild Cognitive Impairment and Dementia Progression. Neuropsychol. Rev. 2022, 32, 149–160. doi: 10.1007/s11065-021-09502-7
  9. Denver, P.; English, A.; McClean, P.L. Inflammation, insulin signaling and cognitive function in aged APP/PS1 mice. Brain Behav. Immun. 2018, 70, 423–434. doi: 10.1016/j.bbi.2018.03.032
  10. Huang, L.K.; Chao, S.P.; Hu, C.J. Clinical trials of new drugs for Alzheimer disease. J. Biomed. Sci. 2020, 27, 18. doi: 10.1186/s12929-019-0609-7
  11. Alotayk, L.I.; Aldubayan, M.A.; Alenezi, S.K.; et al. Comparative evaluation of doxorubicin, cyclophosphamide, 5-fluorouracil, and cisplatin on cognitive dysfunction in rats: Delineating the role of inflammation of hippocampal neurons and hypothyroidism. Biomed. Pharmacother. Biomed. Pharmacother. 2023, 165, 115245. doi: 10.1016/j.biopha.2023.115245
  12. Dong, X.; Fan, J.; Lin, D.; et al. Captopril alleviates epilepsy and cognitive impairment by attenuation of C3-mediated inflammation and synaptic phagocytosis. J. Neuroinflamm. 2022, 19, 226. doi: 10.1186/s12974-022-02587-8
  13. Aarsland, D.; Creese, B.; Politis, M.; et al. Cognitive decline in Parkinson disease. Nat. Rev. Neurol. 2017, 13, 217–231. doi: 10.1038/nrneurol.2017.27
  14. Wilton, D.K.; Mastro, K.; Heller, M.D.; et al. Microglia and complement mediate early corticostriatal synapse loss and cognitive dysfunction in Huntington’s disease. Nat. Med. 2023, 29, 2866–2884. doi: 10.1038/s41591-023-02566-3
  15. Shi, J.M.; He, X.; Lian, H.J.; et al. Tibetan medicine “RNSP” in treatment of Alzheimer disease. Int. J. Clin. Exp. Med. 2015, 8, 19874–19880.
  16. Sahu, B.; Mackos, A.R.; Floden, A.M.; et al. Particulate Matter Exposure Exacerbates Amyloid-β Plaque Deposition and Gliosis in APP/PS1 Mice. J. Alzheimers Dis. 2021, 80, 761–774. doi: 10.3233/JAD-200919
  17. Kim, H.; Seo, J.S.; Lee, S.Y.; et al. AIM2 inflammasome contributes to brain injury and chronic post-stroke cognitive impairment in mice. Brain Behav. Immun. 2020, 87, 765–776. doi: 10.1016/j.bbi.2020.03.011
  18. Mishra, P.; Mittal, A.K.; Rajput, S.K.; et al. Cognition and memory impairment attenuation via reduction of oxidative stress in acute and chronic mice models of epilepsy using antiepileptogenic Nux vomica. J. Ethnopharmacol. 2021, 267, 113509. doi: 10.1016/j.jep.2020.113509
  19. Verma, N.; Despa, F. Contributing Factors to Diabetic Brain Injury and Cognitive Decline. Diabetes Metab. J. 2019, 43, 560–567. doi: 10.4093/dmj.2019.0153
  20. Van Vliet, N.A.; van Heemst, D.; Almeida, O.P.; et al. Association of Thyroid Dysfunction With Cognitive Function: An Individual Participant Data Analysis. JAMA Intern. Med. 2021, 181, 1440–1450. doi: 10.1001/jamainternmed.2021.5078
  21. Bauer, M.E.; Teixeira, A.L. Inflammation in psychiatric disorders: What comes first? Ann. N. Y Acad. Sci. 2019, 1437, 57–67. doi: 10.1111/nyas.13712
  22. Duojie, Z.Y.; Duoji, D. Discussion on the Effects and Prognosis of Treating Cerebral Infarction with Tibetan Medicine Seventy-Ingredient Pearl Pills. J. Med. Pharm. Chin. Minor. 2022, 28, 9–10.
  23. Liang, L.G. The Effect of Tibetan Medicine Seventy-Ingredient Pearl Pills Combined with Nursing Intervention on Improving NIHSS Scores in the Treatment of Cerebral Hemorrhage. J. Chin. Ethn. Med. 2021, 27, 76–78.
  24. Rangji, C. Using Tibetan Medicine Seventy-Ingredient Pearl Pills to Improve Cognitive Function and Oxidative Stress in Alzheimer’s Disease Patients. Electron. J. Clin. Med. Lit. 2017, 4, 13613.
  25. Jin, M.; Wang, C.; Xu, Y.; et al. Pharmacological effects of salidroside on central nervous system diseases. Biomed. Pharmacother. Biomed. Pharmacother. 2022, 156, 113746. doi: 10.1016/j.biopha.2022.113746
  26. Ivanova Stojcheva, E.; Quintela, J.C. The Effectiveness of Rhodiola rosea L. Preparations in Alleviating Various Aspects of Life-Stress Symptoms and Stress-Induced Conditions-Encouraging Clinical Evidence. Molecules 2022, 27, 3902. doi: 10.3390/molecules27123902
  27. Bernatoniene, J.; Jakstas, V.; Kopustinskiene, D.M. Phenolic Compounds of Rhodiola rosea L. as the Potential Alternative Therapy in the Treatment of Chronic Diseases. Int. J. Mol. Sci. 2023, 24, 12293. doi: 10.3390/ijms241512293
  28. Panossian, A.; Wikman, G.; Sarris, J. Rosenroot (Rhodiola rosea): Traditional use, chemical composition, pharmacology and clinical efficacy. Phytomed. Int. J. Phytother. Phytopharm. 2010, 17, 481–493. doi: 10.1016/j.phymed.2010.02.002
  29. Wang, H.; Li, Q.; Sun, S.; et al. Neuroprotective Effects of Salidroside in a Mouse Model of Alzheimer’s Disease. Cell Mol. Neurobiol. 2020, 40, 1133–1142. doi: 10.1007/s10571-020-00801-w
  30. Palmeri, A.; Mammana, L.; Tropea, M.R.; et al. Salidroside, a Bioactive Compound of Rhodiola Rosea, Ameliorates Memory and Emotional Behavior in Adult Mice. J. Alzheimers Dis. 2016, 52, 65–75. doi: 10.3233/JAD-151159
  31. Zhang, X.; Wang, X.; Hu, X.; et al. Neuroprotective effects of a Rhodiola crenulata extract on amyloid-β peptides (Aβ(1-42))-induced cognitive deficits in rat models of Alzheimer’s disease. Phytomed. Int. J. Phytother. Phytopharm. 2019, 57, 331–338. doi: 10.1016/j.phymed.2018.12.042
  32. Nigam, M.; Mishra, A.P.; Adhikari-Devkota, A.; et al. Fruits of Terminalia chebula Retz.: A review on traditional uses, bioactive chemical constituents and pharmacological activities. Phytother. Res. 2020, 34, 2518–2533. doi: 10.1002/ptr.6702
  33. Kim, H.J.; Song, H.K.; Park, S.H.; et al. Terminalia chebula Retz. extract ameliorates the symptoms of atopic dermatitis by regulating anti-inflammatory factors in vivo and suppressing STAT1/3 and NF-ĸB signaling in vitro. Phytomed. Int. J. Phytother. Phytopharm. 2022, 104, 154318. doi: 10.1016/j.phymed.2022.154318
  34. Bulbul, M.R.H.; Chowdhury, M.N.U.; Naima, T.A.; et al. A comprehensive review on the diverse pharmacological perspectives of Terminalia chebula Retz. Heliyon 2022, 8, e10220. doi: 10.1016/j.heliyon.2022.e10220
  35. Wang, W.; Yang, L.; Liu, T.; et al. Corilagin ameliorates sleep deprivation-induced memory impairments by inhibiting NOX2 and activating Nrf2. Brain Res. Bull. 2020, 160, 141–149. doi: 10.1016/j.brainresbull.2020.03.010
  36. Li, Y.; Zhu, R. Research Progress on the Chemical Constituents and Pharmacological Activities of Tibetan Medicine Willow Tea. Gansu Sci. Technol. J. 2019, 35, 115–118+85.
  37. Fu, P.C.; Gao, Q.B.; Zhang, F.Q.; et al. Gene Flow Results in High Genetic Similarity between Sibiraea (Rosaceae) Species in the Qinghai-Tibetan Plateau. Front. Plant Sci. 2016, 7, 1596. doi: 10.3389/fpls.2016.01596
  38. Pan, Y.; Wu, L. Research Progress on the Medicinal Efficacy of Tibetan Medicine Willow Tea. J. World Sci. Technol. 2017, 19, 1737–1741.
  39. Yao, Z.; Liu, H.; Xu, X.; et al. Three new monoterpene glucosides from Sibiraea angustata. Nat. Prod. Res. 2016, 30, 2453–2459. doi: 10.1080/14786419.2016.1201667
  40. An, X. Study on the Pharmacological Effects and Component Analysis of Two Plants from Gansu. Master’s Thesis, Lanzhou University, Lanzhou, China, 2015.
  41. Qin, H.; Deng, L. Research Progress on the Pharmacological Effects and Mechanisms of Asiaticoside. Chin. Pharm. 2021, 32, 2683–2688.
  42. Sun, B.; Wu, L.; Wu, Y.; et al. Therapeutic Potential of Centella asiatica and Its Triterpenes: A Review. Front. Pharmacol. 2020, 11, 568032. doi: 10.3389/fphar.2020.568032
  43. Farhana, K.M.; Malueka, R.G.; Wibowo, S.; et al. Effectiveness of Gotu Kola Extract 750 mg and 1000 mg Compared with Folic Acid 3 mg in Improving Vascular Cognitive Impairment after Stroke. Evid. Based Complement. Alternat Med. 2016, 2016, 2795915. doi: 10.1155/2016/2795915
  44. Lin, X.; Zhang, S.; Huang, R.; et al. Protective effect of madecassoside against cognitive impairment induced by D-galactose in mice. Pharmacol. Biochem. Behav. 2014, 124, 434–442. doi: 10.1016/j.pbb.2014.07.014
  45. Gray, N.E.; Harris, C.J.; Quinn, J.F.; et al. Centella asiatica modulates antioxidant and mitochondrial pathways and improves cognitive function in mice. J. Ethnopharmacol. 2016, 180, 78–86. doi: 10.1016/j.jep.2016.01.013
  46. Veerendra Kumar, M.H.; Gupta, Y.K. Effect of different extracts of Centella asiatica on cognition and markers of oxidative stress in rats. J. Ethnopharmacol. 2002, 79, 253–260. doi: 10.1016/S0378-8741(01)00394-4
  47. Rao, S.B.; Chetana, M.; Uma Devi, P. Centella asiatica treatment during postnatal period enhances learning and memory in mice. Physiol. Behav. 2005, 86, 449–457. doi: 10.1016/j.physbeh.2005.07.019
  48. Liu, Z.; Xu, T. Cultivation Techniques for Wangla. Lishizhen Med. Mater. Medica Res. 2003, 5, 319.
  49. Guo, Z.; Yang, J. Effects of Active Components of Tibetan Medicine Wangla on Senile Plaque Formation and Inflammatory Response in APP/PS1 Transgenic 5×FAD Mice. J. Chin. Med. Mater. 2022, 45, 1444–1450.
  50. Guo, L.; Li, Y. Saffron Cultivation and Management Techniques in Northern Regions. Northwest Hortic. 2023, 3, 35–37.
  51. Khorasanchi, Z.; Shafiee, M.; Kermanshahi, F.; et al. Crocus sativus a natural food coloring and flavoring has potent anti-tumor properties. Phytomed. Int. J. Phytother. Phytopharm. 2018, 43, 21–27. doi: 10.1016/j.phymed.2018.03.041
  52. Abou-Hany, H.O.; Atef, H.; Said, E.; et al. Crocin mediated amelioration of oxidative burden and inflammatory cascade suppresses diabetic nephropathy progression in diabetic rats. Chem. Biol. Interact. 2018, 284, 90–100. doi: 10.1016/j.cbi.2018.02.001
  53. Delkhosh-Kasmaie, F.; Farshid, A.A.; Tamaddonfard, E.; et al. The effects of safranal, a constitute of saffron, and metformin on spatial learning and memory impairments in type-1 diabetic rats: Behavioral and hippocampal histopathological and biochemical evaluations. Biomed. Pharmacother. Biomed. Pharmacother. 2018, 107, 203–211. doi: 10.1016/j.biopha.2018.07.165
  54. Pitsikas, N. Crocus sativus L. Extracts and Its Constituents Crocins and Safranal; Potential Candidates for Schizophrenia Treatment? Molecules 2021, 26, 1237. doi: 10.3390/molecules26051237
  55. Tsolaki, M.; Karathanasi, E.; Lazarou, I.; et al. Efficacy and Safety of Crocus sativus L. in Patients with Mild Cognitive Impairment: One Year Single-Blind Randomized, with Parallel Groups, Clinical Trial. J. Alzheimers Dis. 2016, 54, 129–133. doi: 10.3233/JAD-160304
  56. Akhondzadeh, S.; Shafiee Sabet, M.; Harirchian, M.H.; et al. A 22-week, multicenter, randomized, double-blind controlled trial of Crocus sativus in the treatment of mild-to-moderate Alzheimer’s disease. Psychopharmacology 2010, 207, 637–643. doi: 10.1007/s00213-009-1706-1
  57. Akhondzadeh, S.; Sabet, M.S.; Harirchian, M.H.; et al. Saffron in the treatment of patients with mild to moderate Alzheimer’s disease: A 16-week, randomized and placebo-controlled trial. J. Clin. Pharm. Ther. 2010, 35, 581–588. doi: 10.1111/j.1365-2710.2009.01133.x
  58. Farokhnia, M.; Shafiee Sabet, M.; Iranpour, N.; et al. Comparing the efficacy and safety of Crocus sativus L. with memantine in patients with moderate to severe Alzheimer’s disease: A double-blind randomized clinical trial. Hum. Psychopharmacol. 2014, 29, 351–359. doi: 10.1002/hup.2412
  59. Guo, F.E.; Li, S.Y. Effects of Crocin on the Nrf2/HO-1 Pathway to Improve Learning and Memory Abilities in Rats with Vascular Cognitive Impairment: Experimental Study. Shanxi J. Tradit. Chin. Med. 2022, 43, 1516–1520+1526.
  60. Papandreou, M.A.; Tsachaki, M.; Efthimiopoulos, S.; et al. Memory enhancing effects of saffron in aged mice are correlated with antioxidant protection. Behav. Brain Res. 2011, 219, 197–204. doi: 10.1016/j.bbr.2011.01.007
  61. El Midaoui, A.; Ghzaiel, I.; Vervandier-Fasseur, D.; et al. Saffron (Crocus sativus L.): A Source of Nutrients for Health and for the Treatment of Neuropsychiatric and Age-Related Diseases. Nutrients 2022, 14, 597. doi: 10.3390/nu14030597
  62. Zhang, K.G.; Zhang, Y.Z.; Sun, H.; et al. Protective Effects of Ganoderma Lucidum Water Extract on Chronic Bronchitis Rats and Its Impact on TLRs Pathway. Clin. Exp. Med. J. 2022, 21, 2133–2137.
  63. Kou, F.; Ge, Y.; Wang, W.; et al. A review of Ganoderma lucidum polysaccharides: Health benefit, structure-activity relationship, modification, and nanoparticle encapsulation. Int. J. Biol. Macromol. 2023, 243, 125199. doi: 10.1016/j.ijbiomac.2023.125199
  64. Huang, S.; Mao, J.; Ding, K.; et al. Polysaccharides from Ganoderma lucidum Promote Cognitive Function and Neural Progenitor Proliferation in Mouse Model of Alzheimer’s Disease. Stem Cell Rep. 2017, 8, 84–94. doi: 10.1016/j.stemcr.2016.12.007
  65. Sharma, P.; Tulsawani, R. Ganoderma lucidum aqueous extract prevents hypobaric hypoxia induced memory deficit by modulating neurotransmission, neuroplasticity and maintaining redox homeostasis. Sci. Rep. 2020, 10, 8944. doi: 10.1038/s41598-020-65812-5
  66. Kaur, R.; Singh, V.; Shri, R. Anti-amnesic effects of Ganoderma species: A possible cholinergic and antioxidant mechanism. Biomed. Pharmacother. Biomed. Pharmacother. 2017, 92, 1055–1061. doi: 10.1016/j.biopha.2017.06.029
  67. Lai, G.; Guo, Y.; Chen, D.; et al. Alcohol Extracts from Ganoderma lucidum Delay the Progress of Alzheimer’s Disease by Regulating DNA Methylation in Rodents. Front. Pharmacol. 2019, 10, 272. doi: 10.3389/fphar.2019.00272
  68. Cao, C.; Liao, Y.; Yu, Q.; et al. Structural characterization of a galactoglucomannan with anti-neuroinflammatory activity from Ganoderma lucidum. Carbohydr. Polym. 2024, 334, 122030. doi: 10.1016/j.carbpol.2024.122030
  69. Qu, Z.Q.; Zhou, Y.; Zeng, Y.S.; et al. Pretreatment with Rhodiola rosea extract reduces cognitive impairment induced by intracerebroventricular streptozotocin in rats: Implication of anti-oxidative and neuroprotective effects. Biomed. Environ. Sci. 2009, 22, 318–326. doi: 10.1016/S0895-3988(09)60062-3
  70. Kim, M.S.; Lee, D.Y.; Lee, J.; et al. Terminalia chebula extract prevents scopolamine-induced amnesia via cholinergic modulation and anti-oxidative effects in mice. BMC Complement. Altern. Med. 2018, 18, 136. doi: 10.1186/s12906-018-2212-y
  71. Cui, H.L.H. Research Progress on Tibetan Medicine Seventy-Ingredient Pearl Pills. J. Chin. Ethn. Med. 2018, 24, 68–70.
  72. Xu, W.L.S.; Wang, Z. Comparative Analysis of Modern Research Progress on Seventy-Ingredient Pearl Pills and Twenty-Five-Ingredient Pearl Pills Based on Literature Data Mining. J. Chin. Ethn. Folk. Med. 2017, 26, 59–63+71.
  73. Yang, J.Z.J. Effects of Tibetan Medicine Moxibustion Combined with Seventy-Ingredient Pearl Pills on Limb Function in Stroke Hemiplegia Patients. Jilin Tradit. Chin. Med. 2020, 40, 642–646.
  74. Jin, H.H. Report on 14 Cases of Acute Mountain Coma. China Med. Herald. 2008, 10, 948.
  75. Liao, B.X.; Xi, A.Q. Effects of Tibetan Medicine Seventy-Ingredient Pearl Pills on Cognitive Function and Oxidative Stress in Alzheimer’s Disease Patients. Chin. J. Gerontol. 2009, 29, 2437–2439.
  76. Zhu, A.Q. In Effects of Tibetan Medicine Seventy-Ingredient Pearl Pills on Aβ(1-40) and Aβ(1-42) Expression in the Brains of Tg2576 Alzheimer’s Disease Model. Mice. In Proceedings of the 2009 National Anti-Aging and Alzheimer’s Disease Academic Conference, Fuzhou, China, 25–28 November 2009; p. 1.
  77. Yan, Q.W. RNSP Inhibits White Matter Degradation in APP/PS1 Mice and Improves Learning and Memory Abilities. Chin. J. Biochem. Mol. Biol. 2020, 36, 573–582.
  78. Zhu, M.X.; Liu, X.L. Improvement of Cerebral Edema After Ischemia-Reperfusion Injury in Rats by Seventy-Ingredient Pearl Pills. Chin. Tradit. Herbal. Drugs 2015, 37, 640–642.
  79. Wang, X.Q.; Shang, H. Improvement of Memory Acquisition Deficit in Mice Induced by Physostigmine by Tibetan Medicine Seventy-Ingredient Pearl Pills. Qinghai Med. 2001, 7, 1–2.
  80. Cui, H.Y.; Li, H. Effect of Tibetan Medicine “Ratanasampil” on Cognitive Ability in a Parkinson’s Disease Rat Model. Chin. J. Pathophysiol. 2024, 40, 610–618.
  81. Zhu, Y.L.; Tan, J.C. Overview of the Application and Safety of Twenty-Five-Ingredient Coral Pills in Neurology. J. Chin. Ethn. Folk. Med. 2020, 29, 64–66.
  82. Hu, X.D. Network Pharmacology Study on Tibetan Medicine Twenty-Five-Ingredient Coral Pills for Treating Alzheimer’s Disease. Chin. Pharmacol. Bull. 2019, 35, 128–132.
  83. Gejia, Z.; Honghong, L.; Xianda, H.; et al. Regulation of Tibetan Medicine 25 Coral Pills on Intestinal Microflora of Alzheimer’s Disease Mice Mod. Tradit. Chin. Med. Mater. Medica World Sci. Technol. 2022, 24, 158–167.
  84. Liu, C.L. Clinical Research Summary of Twenty-Five-Ingredient Coral Pills. Health Vocat. Educ. 2004, 20, 104–105.
  85. Wang, D.J. Investigation of the Clinical Efficacy of Twenty-Five-Ingredient Coral Pills for Treating Refractory Headache. World Latest Med. Inf. Digest 2016, 16, 228+231.
  86. Ma, L.H. In Efficacy Analysis of Tibetan Medicine Twenty-Five-Ingredient Coral Pills in Treating Vascular Mild Cognitive Impairment. In Proceedings of the Chinese Medicine Summit and the Eighth National Academic Conference of the Neurology Branch of the Chinese Medical Association, Chongqing, China, 10–12 July 2015; p. 1.
  87. Luo, X.M.; Ding, Y. Mechanism of Twenty-Five-Ingredient Coral Pills Regulating Akt/mTOR/GSK-3β Signaling Pathway to Improve Alzheimer’s Disease Mice. Chin. J. Chin. Mater. Med. 2022, 47, 2074–2081.
  88. Quzhen, D.; Tsering, T.; Nima, D. Effects of Tibetan medicine Twenty-Five Ingredients Pearl Pill on cerebral hemodynamics, nerve function and self-care ability in patients with cerebral thrombosis sequelae J. Med. Pharm. Chin. Minor. 2023, 29, 10–11.
  89. Zhai, S.P.; Jia, H. Clinical Effect of Tibetan Medicine Twenty-Five-Ingredient Pearl Pills for Treating Ischemic Stroke. J. Chin. Ethn. Med. 2022, 28, 10–11.
  90. Ding, H. Clinical Efficacy of Tibetan Medicine Twenty-Five-Ingredient Pearl Pills for Treating Sequelae of Cerebral Hemorrhage. J. Chin. Ethn. Med. 2021, 27, 1–2.
  91. Wang, Z.S.; Zhao, X.C. Clinical Efficacy Observation of Tibetan Medicine Nuo Brand Twenty-Five-Ingredient Pearl Pills for Treating Coronary Heart Disease Angina. Res. Integr. Tradit. West. Med. 2014, 6, 71–74.
  92. Zhou, Q.Z. Comprehensive Treatment of Vascular Dementia with Twenty-Five-Ingredient Pearl Pills: Efficacy Observation. Chin. J. Tradit. Chin. Med. Inf. 2003, 10, 55–56.
  93. Zhang, J.Z. Intellectual Effects of Tibetan Medicine Compound Pearl Pills on Animal Models with Memory Recall Deficits. J. Southwest. Univ. Natl. 2010, 36, 106–108.
  94. Xu, Z.R.; Tian, Q.J. Review of Research on Ruyi Zhenbao Pills (Tablets). Chin. Folk. Ther. 2020, 28, 106–109.
  95. Wu, P.L.; Zhen, L.F. Pharmacological and Clinical Research Progress on Ruyi Zhenbao Pills. J. Chin. Ethn. Folk. Med. 2016, 25, 31–32+34.
  96. Ge, Z.; Zhuo, M.; Zhou, B.; et al. Compatibility Characteristics of Ruyizhenbao Pills and Its Core Drug in Treatment of White-pulse Disease. Mod. Tradit. Chin. Med. Mater. Medica World Sci. Technol. 2022, 24, 3728–3736.
  97. Chen, W.W.; Liu, J. Protective Effect of Ruyi Zhenbao Tablets on Rats with Vascular Dementia Model. Drug Eval. Res. 2016, 39, 220–223.
  98. Suonan, Z.J. Clinical Effect of Tibetan Medicine Ruyi Zhenbao Pills for Treating Peripheral Facial Paralysis. J. Chin. Ethn. Med. 2022, 28, 3–5.
  99. Zhang, Y.B.; Jiang, K. Current Research Status of Tibetan Medicine for Treating Gout. Chin. Mod. Tradit. Chin. Med. 2022, 24, 1212–1218.
  100. Wang, S.T.; Wang, X.L. Clinical Observation of Ruyi Zhenbao Pills for Treating Osteoarthritis: 80 Cases. China Med. Herald. 2010, 7, 82–83.
  101. Zhang, Y.N. Effect of Oxiracetam Combined with Ruyi Zhenbao Pills in Treating Vascular Dementia. J. Chronic Dis. 2021, 22, 910–912.