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Abstract: Recent advances in artificial intelligence (AI) have shown promising results in various image-
based systems, improving accuracy and throughput, while reducing latency. All these factors are crucial
in healthcare and have generated increased interest in this technology. However, there are also multiple
challenges integrating Al in existing systems, such as poor explainability, data imbalance and bias. These
challenges affect the reliability of the neural networks used in Al applications. The limitations may sig-
nificantly affect the quality and cost of medical care by introducing false positive diagnosis. The false
positives subsequently lead to increased stress in patients and necessitate additional testing and proce-
dures. Lack of rich data representing all socio-economic groups can also undermine reliable decisions for
underrepresented groups. Although various studies discussed techniques that may help with bias mitiga-
tion, to the best of our knowledge, no practical experiments have been conducted so far that compare dif-
ferent reweighting approaches using convolutional neural networks (CNN). This work focuses on in-
depth explanatory analysis of chest X-ray datasets to understand and quantify the problem of class imbal-
ance and bias. After that, various topologies of binary classifications are compared, followed by practi-
cal applications of loss reweighting techniques and comparison of their influence of privileged, under-
privileged, and overall population. Experiments proved that high classification accuracy can be achieved
using an efficient model topology suitable for embedded devices, making it possible to run locally with-
out the need for cloud processing. Preliminary results showed that performance of the model for the
underprivileged class can be improved by 15% if proper weighting factors are obtained and applied dur-
ing the training procedure.
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1. Introduction

Although artificial intelligence (AI) has become a transformative force, enabling innovations across numerous
market segments that redefined their capabilities [1], it can also be seen as a Pandora’s box, leading to multiple chal-
lenges which, when unaddressed, can have significant deleterious consequences. Some examples include the black
box nature of Al [2], models’ generalization capabilities [3], or sensitivity to the four Vs of Big Data (Volume, Vari-
ety, Velocity, Veracity) [4]. These issues continued to be addressed in various studies on improving explainability,
training procedures (including new optimizers [5], data enhancements and augmentations [6].

In this study, we focus on the data imbalance problem, which is one of the biggest limitations of Al in health-
care. Data imbalance impacts neural network reliability and performance even though the model reaches the conver-
gence step. The data imbalance occurs when a dataset contains most examples representing the examined condition
and no examples present for healthy participants [7], as well as various bias, such as sampling bias (e.g., labels incon-
sistency) or selection bias (e.g., overrepresentation of certain groups). Data imbalance and bias may significantly
affect the quality and cost of medical care by introducing false positive diagnosis [8] and thus lead to increased stress
in patients and a need for performing additional procedures [9]. Lack of rich data representing all socio-economic
groups can undermine reliable decision making for the underrepresented group [10] and inequality in estimated pre-
diction relevance [11].

Processing of medical data with deep neural networks (DNN) and convolutional neural network (CNN) in par-
ticular, is a well-studied problem. The current proposed solutions address analysis of various medical imaging modal-
ities, including ultrasound [12], magnetic resonance imaging [13], X-ray [14], computed tomography [15], thermal
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imaging [16], and other human system interaction interfaces [17]. The application of Al technology in medicine has
clear benefits, such as decreased cost and time of decision processes [ 18], possibility for combining data from differ-
ent modalities [19], automated analysis of multiple inputs and frames in a few seconds [20], decision support and
guidance for professionals [21], as well as access to telehealth, which is crucial for rural areas [22]. In addition,
recently popular precision medicine [23] can provide even more advantages, e.g., possibility of tailoring services to
individuals based on disease history, demographics, or treatment response [24]. CNNs have shown particularly good
results in image processing tasks, due to their basic concepts such as weight sharing and translation invariance, which
is allowed for repurposing models to many tasks even with the limited size of available training samples [25].

Although many of the recent studies showed very promising preliminary results in detection and classification
of medical data, many of them don’t address the class imbalance and bias problems. Luckily, a separate branch of
research is looking into solutions to mitigate these limitations. Norori N. et al. [26] discussed various ways of
addressing bias in Al that includes sharing of data and algorithms as well as patient-centered Al development. New
research directions to address bias present in healthcare were also analyzed by Ntoutsi E. et al. [27] covering areas
such as instance weighting and selection, model regularization, score corrections, and others. Fletcher R. et al. [28]
described three criteria for evaluation of Al systems to provide better guidance for healthcare, i.e., appropriateness,
farness, and bias. Another survey on bias types and influence on medical decisions was presented by Mehrabi N. et
al. [29]. Some initial attempts for distributions rebalancing have been also evaluated [30].

Various approaches have been already discussed in the literature to mitigate class imbalance and bias, however,
to the best of our knowledge, no practical experiments have been performed with such approaches in CNN-based X-
ray classification systems to prove their robustness. In the view of the foregoing, the contribution of this work is
threefold: (1) first, a detailed analysis of chest X-ray datasets of 14 common lung disease categories is performed,
including data cleaning, visualization, common features selection, and distribution inspection; (2) secondly, the pres-
ence of class imbalance and bias is examined by comparing the probability of favorable outcome for privileged and
unprivileged instances; (3) and lastly, various CNN topologies are compared to select the best performing one and
evaluate the possibility for bias mitigation using different weighting approaches.

The rest of the paper is structured as follows: Section 2 covers the exploratory data analysis focused on under-
standing the structure of the X-ray dataset commonly used in Al research. The analysis includes assessment of distri-
bution of available samples across various classes, followed by evaluation of dataset fairness and classes reweighting
transformations. Section 3 presents comparison of performance of different deep neural network topologies in the task
of X-ray image classification. Additionally, an in-depth examination of the influence of various weighting operations
on the model performance is summarized in this section. Finally, the preliminary results are discussed in Section 4
and the work is concluded in Section 5.

2. Exploratory Data Analysis

2.1. Dataset

The NIH Chest X-ray dataset [31] was used in this study. It contains over 100,000 samples gathered from over
30,000 patients, many of whom have been identified with advanced lung diseases. All samples have been annotated
with one of 14 diseases: Infiltration, Atelectasis, Effusion, Nodule, Pneumothorax, Mass, Cardiomegaly, Pneumonia,
Hernia, Emphysema, Pleural Thickening, Fibrosis, Consolidation, Edema.

A subset of images belongs to the ‘No Finding’ category. Some of the annotations include the location of the
abnormalities, as well, as presented in Figure 1. Many of the labels were obtained using natural language processing
techniques, so there could be some erroneous labels, but the NLP labeling accuracy is estimated to be >90%. The res-
olution of images is 1024x1024 and the set was downloaded more than 60,000 times so far.
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Figure 1. Visualization of samples with ground-truth bounding boxes across sample classes.

2.2. Modifications to the Dataset

In the initial phase, the dataset was carefully examined and cleaned-up to remove missing labels and simplify
analysis of bias mitigation techniques. First, the samples with multiple labels were skipped. Secondly, images from
the version 2 of the dataset were also removed. Finally, ~10300 random samples with the ‘No Finding’ category were
preserved in the analyzed set, while the rest was dropped to reduce discrepancy between quantities of positive and
negative predictions. Figures 2-4 show the distribution of samples in the dataset across different categories in all
described steps of data preprocessing. Simultaneously, the label file (that contained metadata of recorded samples,
such as patients’ demographics, follow-up procedure codes, abnormality location, and others) was also examined and
cleaned up from redundant or unused columns ("Unnamed: 0', 'Follow-up #, Patient ID', 'View Position', 'Original-
Image[Width', 'Height]', 'OriginallmagePixelSpacing[x', 'y]'). Additionally, the column representing disease classes
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was converted to one-hot encoded vectors required by the neural network training pipeline.
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Figure 2. Number of samples per class in the Chest X-ray dataset. Samples with multiple labels were removed.
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Figure 3. Number of samples per class in the Chest X-ray dataset. Dataset used in this work is a modified version,
which excludes the classes introduced in the version 2 of the dataset (Hernia, Emphysema, Pleural Thickening, Fibro-

sis, Consolidation, Edema).
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Figure 4. Number of samples per class in the Chest X-ray dataset after removing 50,000 random samples from the
“No finding” class.

2.3. Exploratory Data Analysis

Data prepared in the previous step was then analyzed to evaluate class imbalance and bias problems as well as
to obtain a better understanding of sample characteristics, such as the most dominant features, areas of the biggest
variability per each class, and visual differences between images from various categories. A very common operation
in various image-based diagnostics and monitoring solutions to reduce noise and motion artifacts is to analyze a mean
image across a temporal window of the input sequence instead of each frame at a time [32]. Another way of reduc-
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ing noise is to use denoising algorithms [33] or denoising neural networks [34]. The mean image can be also used to
draw meaningful conclusions about abnormality characteristics for a specific disease by calculating the average of
pixel values across samples collected from different subjects for each class [35, 36]. Similar analysis was performed
in this study to evaluate the presence of areas of the average and the highest variability per each category in the chest
X-ray images and determine if some meaningful differences between different classes are visible in the averaged
frames. Mean images for each class calculated for random 25 samples are presented in Figure 5, followed by images
representing absolute differences between the mean frame for each category and the mean image for the ‘No finding’

class (Figure 6).

Atelectasis Cardiomegaly Effusion

Infiltration Mass No finding

Nodule Pneumonia Pneumothorax

Figure 5. Mean image calculated for 25 random samples per each category.
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Figure 6. Absolute differences between the mean image calculated for 25 random samples per each category and the
mean image calculated for 25 random samples for the ‘No finding’ class’.

Figures 7 and 8 show standard deviation frames and differences between the computed result frames and the
standard deviation frames obtained for the ‘No Finding’ category, correspondingly. As can be seen, the areas of high-
est variability (dark blue or dark red regions) differ between classes. This confirms the possibility for CNN to learn
such patterns to perform accurate classification of the analyzed lung conditions.
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Figure 7. Standard deviation image calculated for 25 random samples per each category.
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Figure 8. Absolute differences between the standard deviation image calculated for 25 random samples per each cate-

gory and the standard deviation image calculated for 25 random samples for the ‘No finding’ class’.
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Since mean and standard deviation frames were computed for different volunteers, the features such as height,
weight, and gender may influence the values of result frames and potentially lead to misleading conclusions. Thus,
this step was only performed to verify the presence of differences in spatial representation between different cate-
gories, yet the neural networks were trained with single samples only.

The next step of the Exploratory Data Analysis involved the use of principal component analysis (PCA) for
computation of the most dominant features. Such summary of features was obtained by transforming data into fewer
dimensions using singular value decomposition (SVD). Eigen images obtained for each category (40% of compo-
nents kept) are plotted in Figure 9. Eigen images can be used to preserve only the features that correspond to the
highest variance of the set, and in this way, simplify the convergence of the neural network and the risk of overfitting.
Based on the presented results, the highest differences are present in the central and lower portion of lungs for most of
the categories. Taking this into account, the images could be cropped to focus on this area.

Pneumonia

Figure 9. Eigen images obtained for each category using Singular Value Decomposition with number of components
set to 40%.
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2.4. Class Imbalance and Bias Evaluation

As previously mentioned, the goal of the work is to evaluate a possibility of mitigating bias and class imbal-
ance in the task of CNN-based X-ray lung disease classification. To do this, a detailed analysis of class distribution
was performed. At first, the count of samples in each category grouped by genders was obtained. Results are col-
lected in Table 1 and plotted in Figure 10.

Table1 Number of samples across Finding Labels categories grouped by genders

Patient Gender

Finding Labels Female Male
Atelectasis 1612 2603
Cardiomegaly 585 508
Effusion 1797 2158
Infiltration 4164 5383
Mass 838 1301
No Finding 4550 5811
Nodule 1181 1524
Pneumonia 128 194
Pneumothorax 1193 1001
Pneumothorax Patient gender

=

Pneumonia = M

Nodule
No finding
Mass

Infiltration

Finding labels

Effusion
Cardiomegaly

Atelectasis

0 1000 2000 3000 4000 5000 6000
Figure 10. Distribution of samples across Finding Labels categories grouped by gender.

As can be seen, the number of samples is greater for the male category for the majority of categories except
Pneumothorax and Cardiomegaly. Since the further experiments were performed for the binary classification, two
categories were selected: one underrepresented by the male and the other one underrepresented by the female groups.
An exemplary discussion is done for the ‘No Finding” and ‘ Pneumothorax’ classes but can be easily expanded to
other categories. To amplify the imbalance and bias problems even further, random samples from the ‘No Finding’
class representing the female group were removed, preserving only 1% of samples. The obtained distribution of sam-
ples across the groups is shown in Figure 11.
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Figure 11. Distribution of samples across both categories grouped by gender after amplifying class imbalance and
bias problems by removing majority of samples from one class. Finding ID 5 and 8 correspond to the ‘No Finding’
and ‘ Pneumothorax’ categories, respectively, while gender ID 0 and 1 correspond to male and female categories,
respectively.

Evaluation of the impact of the bias and class imbalance problems on the possible favorable impact per each
group was done using the IBM Al Fairness 360 Toolkit [37]. The toolkit can help to examine, report, and mitigate
discrimination and bias in machine learning systems, supporting the entire application lifecycle. In our case, the fair-
ness tool was used in the following steps:

* A Binary Label Dataset was created specifying ‘No Finding’ as the favorable outcome and gender as the pro-
tected attribute

* Gender female was selected as the unprivileged group, since most of the samples in the ‘No Finding’
category correspond to the male group

» Two metrics were used for evaluation of the bias and imbalance problems: Statistical parity difference
(Equation (1)) and Disparate impact (Equation (2)).

Statistical parity difference (S PD) or in other words the absence of bias specifies the difference between proba-
bility (P) of the favorable outcome (O,) for the unprivileged class (S ") to the favorable outcome for the privileged
class (S*), and can be defined as:

SPD.(X,8)=P(c(x)=0yxe ")~ P(c(x) = O xe §7) (1)

where X is the analyzed population, S is a subset of the population belonging to a specific group for which the bias is
being estimated, c is the binary classifier and x is the feature input vector for the specific sample.

Disparate impact (DJ) is another metric used for bias evaluation. It analyzes the same components as SPD but
instead of computing their difference, the ratio between them is used, as defined in Equation (2):

P(c(x) = 0f|x€ Sury

DI.(X,S) =
P(c(x) = 0f|x€Sl’)

2

Metrics calculated for the analyzed set are presented in Table 2. The negative value of the SPD metric indicates
lower probability of the favorable income for the unprivileged group. Similarly, DI below 0.5 confirms the same
finding.

Table 2 Bias metrics: statistical parity difference and disparate impact computed for the population from the X-ray

set used in the study
Bias metrics value
Statistical parity difference -0.57
Disparate impact 0.33

To reduce the impact of the class imbalance and bias present in the analyzed population, the reweighting algo-
rithm from the Fairness toolkit was used to compute the factors for weighing the dataset and transforming the sample
weights. The factor for each class (¢) and group (g) F,. is calculated as:
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Fo= W(groups == g)x*W(y ==c)
s (W«W(g_and c))

3)

where W is the sample weight for a specific subgroup of the set.

Computed reweighting factors for each gender and ‘ Finding Labels’ class are presented in Table 3. As can be
seen, the combination of the ‘No Finding’ and female received the highest factor, which compensates for the fewest
number of samples in this group. These weights were later used for the neural network training to improve perfor-
mance of the model for each class and ensure none of them will be favored.

Table3 Number of samples across Finding Labels categories grouped by gender

Finding Labels Gender Reweighting factor
No Finding F 2.658418
No Finding M 0.868697
Pneumothorax F 0.358931
Pneumothorax M 1.762872

Additionally, a common practice is to compute class weights using a logarithm of the group size with respect to
the total number of samples and dividing by a number of categories to keep the loss at the same magnitude, as
defined in Equation (4).

“4)

1 totalsi
Fo= clipm,«,,(log( 2 S’Ze),l)

groupsize 2

Factors calculated using this approach were also evaluated in our work. We will refer to them as the group size
(GS) factors. Weights obtained with the first method will be referred to as fairness toolkit (FT) factors.

3. Neural Network Experimental Evaluation

This section describes the details of selecting a deep neural network for the task of X-ray data binary classifica-
tion using the image set prepared and described in the previous sections.

Before feeding samples to the model, images were normalized using z-score normalization which is a usually
encountered type of data spread in X-ray and radiology [38]. Also, to improve generalization capabilities, various data
augmentation techniques were utilized, e.g., random rotation, shift, shear, and zoom. We also used the horizontal flip
but did not apply vertical flip to preserve the standard orientation of lungs. Examples of such prepared samples from
both categories are presented in Figure 12.

Pneumothorax

Figure 12. Examples of images from both categories after data pre-processing and augmentation.

For all experiments, the following hyperparameters were used: BATCH_SIZE = 32, IMAGE SIZE = [128,
128], OPTIMIZER = Adam, LOSS = Binary Cross Entropy, EPOCHS = 10. The dataset split was 0.6:0.15:0.15 for
the train, test, and validation sets. Various topologies of Convolutional Models were tested to determine the most
accurate one. Additionally, different regularization techniques were also compared. Finally, the effect of class
reweighting on the accuracy per each category was analyzed to determine if CNNs are sensitive to bias and whether it’
s possible to mitigate such limitations. The code and links to prepared datasets and checkpoints are available online
for ease of result reproductivity'). The environment used for the experiment was Google Colab but can also be exe-
cuted locally using Jupyter notebooks.
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3.1. Evaluation of Various Model Topologies and Regularization Techniques

The first evaluated model was a custom shallow CNN with two convolutional layers, each followed by the max
pooling operation, and three dense layers at the end. Various width and depths of each layer were evaluated. The final
structure of the model is presented in Figure 13. The learning rate used in this configuration was 1e-4.

V]

( 7 ( 7 =
256 84 2
dense 1 dense 2 dense 3

48
) conv 2
gz 5x5
conv 1
5x5

Figure 13. Topology of the shallow model, red slices indicate maxpool operator, orange slices indicate ReLU activa-

tion, at the end of the model the softmax activation was used.

Accuracy and loss functions are presented in Figure 14. After a few epochs, the validation loss increases, indi-
cating that the model was overfitted. Thus, different regularization techniques were used. Figure 15 presents the cor-
responding plots for the case in which the dropout was applied. Figure 16 shows results achieved for dropouts with
an additional L1, L2 kernel regularization (11=1e-5, 12=1e-4) and L2 activity regularization (12=1e-5). Additionally,
the early stop was used to terminate the training procedure before the overfitting appears. Training curves obtained in
this scenario are shown in e shown in Figure 17.
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Figure 14. Accuracy and loss for the shallow model.
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Figure 15. Accuracy and loss for the shallow model after applying the dropout.
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Figure 16. Accuracy and loss for the shallow model after applying the dropout and regularization.
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Figure 17. Accuracy and loss for the shallow model after applying the dropout and regularization.

Based on the performed analysis, it was confirmed that regularization techniques are crucial to avoid model
overfitting and ensure model convergence. However, the accuracy of the model was still not satisfactory. Therefore,
in the next step, the transfer learning approach was used. This method allows for repurposing the existing model,
trained previously for a different task, to a new unknown problem [16]. It’s achieved by reusing all layers but the last
one, and fine tuning only the fully connected layer with a new dataset. The model selected for the study and fine-
tuned to the binary classification of the X-ray data was EfficientNetB1 model [39]. This topology was used since it is
the best model for achieving high accuracy, while being very efficient by scaling all dimensions with compound
coefficients. All layers of the model pretrained on the ImageNet dataset remained unchanged, except the final classi-
fication dense layer. It was replaced with the global average pooling, followed by dense operators and softmax acti-
vation. The learning rate in the transfer learning approach should be reduced, thus, it was decreased to 1e-5. All regu-
larization techniques used previously were also applied to this topology. Figure 18 presents accuracy and loss curves
produced in this scenario.
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g
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S
©
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Figure 18. Accuracy and loss for the shallow model after applying the dropout and regularization.

The use of the deeper architecture and leveraging weights previously trained on larger datasets was crucial for
achieving significantly better performance. Both training and validation accuracy were improved by more than 20%.

3.2. Evaluation of Class Weighting Approaches

As previously mentioned, the goal of the performed study is to (1) evaluate if CNN models are sensitive to bias
and class imbalance problems and (2) compare different techniques used for bias mitigation. After comparing perfor-
mance of various topologies, it was possible to move to the final experimental analysis, i.e., applications of two pre-
viously introduced reweighting factors: GS and FT factors. Since transfer learning techniques with bigger models can
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compensate for such issues, this step of the analysis was done by using the shallow network. Three scenarios were
compared: (1) the shallow model without reweighting, (2) the shallow model with GS reweighting, and (3) the shal-
low model with FT reweighting. The idea of the reweighting technique is to weigh the loss computed for different
samples based on whether they belong to the majority or the minority classes. A higher weight is assigned to the loss
encountered by the samples associated with the minor class, as explained in the previous section. To better under-
stand the influence of bias and class imbalance problems as well as evaluate potential performance gain from using
reweighting algorithms, different metrics were used in the comparison: accuracy, precision, recall, and ROC curves.
The reason for selecting ROC curves was that we wanted to consider true negatives as well, due to the class imbal-
ance they may have influenced in the final performance of models. Results obtained for all three scenarios are pre-
sented in Figure 19 and Table 4.

ROC curve predicted_vals F saved model_1 ROC curve predicted_vals M saved model_1 ROC curve predicted_vals_saved_model_1
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Figure 19. ROC curves for 3 analyzed scenarios. From the top row: model 1 no reweighting, model 2 reweighting
using GS factors, model 3 reweighting using FT factors. From the left column: female subset only, male subset only,

both genders combined.

Table4 Performance metrics obtained for different weighting algorithms with the binary X-ray classification based
on the custom shallow CNN

Metric (validation subset, combined genders) [%]

Scenario Accuracy Precision Recall ROC
No reweighting 0.70 0.80 0.76 0.80
Reweighting with GS 0.70 0.71 0.99 0.85
Reweighting with FT 0.71 0.71 0.99 0.86

4. Discussion

The presented study focuses on addressing an important problem of imparity difference, which is especially
important in medical applications. Recent progress in Al shows promising results of processing medical data, how-
ever, without mitigating the bias and blackbox nature of Al, it may be difficult to convert state-of-the-art research into
the state-of-the-art product.

Based on the performed experiments, the probability of a favorable outcome for the underprivileged group can
be increased with reweighting approaches, which confirms the thesis of this study. As can be seen in Figure 19, the
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area under the ROC curve increased by 9% and 15% for GS and FT factors, respectively for the female group. This
proves the necessity of bias quantification and mitigation using all available metadata and patient demographics, other
than the limited categorical labels associated with the dataset. In addition, our study showed that simply taking the
ratio of samples from both categories yields certain performance improvements, but may not be sufficient enough.
Therefore, detailed analysis of various weighting factors is needed.

Furthermore, the selection of proper performance metrics is important in case of bias and class imbalance, as
noted in Table 4. Even though the accuracy for all scenarios remains relatively unchanged, detailed analysis of
threshold independent ROC curves (Figure 19) showed poor performance for the underrepresented classes, revealing
the real performance and limitations of the trained classifier. Adaptation of different reweighting approaches helped to
address this issue. As can be seen from Table 4 and Figure 19, the proposed reweighting approach with FT factors
allowed for achieving high ROC for both genders separately (or combined). This is contrary to the case of no
reweighting and GS weighting that resulted in low ROC for the female group.

Although the presented results are promising, they are only preliminary and further research is encouraged. The
presented analysis was conducted for gender bias, but the similar reweighting could be performed for other protected
attributes such as age bias. Figure 20 presents age distribution for each of the categories where some diseases impact
only certain age groups, and this can be a bias source needing to be performed in future work.
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Figure 20. Relation between classes and age (mean and standard deviation marked for each class).

5. Conclusions

In this paper, an in-depth evaluation of techniques was performed for quantifying and mitigating bias in medi-
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cal datasets used for CNN models. The study was performed based on the explanatory data analysis which revealed
data imbalance and bias problems in the commonly used X-ray chest database. After comparison of different topolo-
gies, models were trained with the loss weighting technique, increasing importance of the underprivileged class. The
preliminary results showed that such an approach is a necessity in image-based healthcare diagnostics and can
improve prediction accuracy by ~15% for the minority class. Further work will focus on (1) examining other pro-
tected attributes that may suffer from the bias problem and (2) applying other methods that help with explainability
and fairness of Al systems.
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data-to-solution-2021.
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