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Abstract: The sensor network (SN) has long been an ongoing research topic with many successful appli-
cations in a wide range of fields. Lying in the core part of this paper is the distributed filtering problem
over SNs that has been gaining growing research interests. We aim to provide a timely survey on recent
advances in the distributed filtering problems over SNs subject to communication constraints. First, some
basic knowledge concerning the distributed filter design issue is provided in terms of background intro-
duction and mathematical descriptions. Then, some frequently encountered network-induced complexi-
ties resulting from communication constraints are comprehensively reviewed. Subsequently, the latest
research progress of the distributed filtering schemes is discussed in detail for various systems over SNs
with different performance specifications. Furthermore, practical applications of the distributed filtering
methods are presented that include target tracking and distributed generation. Finally, concluding
remarks are given followed by possible future research directions.
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1. Introduction

Owing to the rapid advancement of wireless communication technologies, sensor networks (SNs) have attracted
ever-increasing research attention with widespread applications in a variety of areas such as health care, environment
monitoring, power grids, transportation networks, and intelligent manufacturing. In general, a typical SN is com-
prised of numerous sensor nodes geographically distributed and coupled over certain monitored regions. Each sensor
possesses sensing, computing, and wireless communication capabilities to share the local information with the neigh-
boring network nodes, thereby achieving the desired tasks in a collaborative way [1—3]. In the context of SN, a fun-
damental issue is the attainment of reliable state estimates of the target plants based on available yet possibly contam-
inated measurements. To date, the state estimation or filtering problems over SNs have received steadily growing
research interests [4—S8].

It is worth mentioning that the filtering schemes over SNs can be generally categorized into the centralized
method and distributed method according to the filter structures. Particularly, when a fusion centre is available, each
individual sensor will send its own measurement to the remote fusion centre via communication networks, and then
the centralized filtering algorithm is carried out in the central unit to attain the state estimate from the measurements
collected by all sensor nodes. The structure of the centralized estimation with a fusion centre is presented in Figure 1.
Although the centralized filtering strategy is capable of providing the globally optimal state estimate, it is rather chal-
lenging to establish the centralized filtering algorithm because of the following substantial difficulties: the timely yet
efficient communication among sensors is hard to be realized and the computational burden would be quite huge,
which is especially true for large-scale SN.

https://www.sciltp.com/journals/ijndi
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Figure 1. Centralized estimation with a fusion centre.

Different from its centralized counterpart, the distributed filtering scheme enables us to acquire the state esti-
mates without the adoption of the fusion centre. Specifically, in the distributed setting, each node of an SN generates
the local estimate of the system state by exploiting measurements from both itself and neighboring nodes according to
the network topology. The structure diagram of the distributed state estimation is shown in Figure 2. As compared
with the centralized filtering scheme, the distributed counterpart possesses the advantages of more flexibility, lower
cost, and higher reliability. Despite these inherent advantages, the distributed filtering would pose essential chal-
lenges to the analysis of the filtering performance and the design of the filters. Particularly, one of the main chal-
lenges is how to take into account the complicated couplings between sensor nodes when constructing the distributed
filter structure. In addition, the incompletely connected communication topology results in a sparse SN, and this ren-
ders additional difficulties in designing the distributed filter.
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Figure 2. Distributed state estimation without a fusion centre.

Until now, the problem of distributed filtering (DF) has drawn considerable research interests and a wealth of
literature has been published see e.g. [5—8]. Many effective DF approaches have been proposed for various systems
under specific performance requirements, which mainly include the distributed finite-horizon H., filtering method
[9,10,76], the distributed set-membership filtering (SMF) strategy [11—13,32], the distributed variance-constrained fil-
tering scheme [ 14—17], and the distributed particle filtering (PF) algorithm [18—20].

With the rapid development of network technologies, networked control systems have been gaining an ever-
increasing popularity in practical applications due primarily to their distinct advantages of simple installation, easy
maintenance, and low cost. While enjoying these merits, networked control systems, whose components are usually
connected via shared yet constrained communication networks, are likely to experience undesired networked-induced
phenomena including, but are not limited to, the packet dropout [9,21], signal quantization [7], transmission delay
[22,23], sensor saturation [24], and channel fading [25,26]. These phenomena may seriously deteriorate the estima-
tion performance if not handled properly, especially for networked control systems over SNs. For this reason, much
research effort has been made to investigate the DF problems with various networked-induced phenomena
[6,8,27-31].

On another research frontier, communication protocols (pledging that the signal transmissions are implemented
according to certain prescribed "agreements'") have played a vitally important role in networked control systems. Note
that communication protocols are adopted resulting mainly from the network-based communication of limited capac-
ity. More specifically, simultaneous transmissions of massive data across a shared communication network would
inevitably result in data collisions. To fully use communication resources and relieve data collisions, an effective way
is to exploit communication protocols such that only partial signals are permitted to transmit via the shared network.

So far, there are four kinds of communication protocols extensively investigated in the literature, which are the
try-once-discard (TOD) protocol, the stochastic communication (SC) protocol, the round-robin (RR) protocol, and the
event-triggered (ET) mechanism. For systems over SNs under scheduling protocols, the protocol-based DF issues
have stirred considerable research interests, and many elegant and remarkable outcomes have been reported, see
[16,26,33=35] for RR protocols, [36,37] for TOD protocols, [5,38,39] for SC protocols, and [12,13,40,41] for ET
mechanisms.
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In summary, it is an interesting, essential yet challenging topic to study the distributed filter design issues over
SN subject to communication constraints. This paper focuses on providing a timely review of recent advances on the
DF problems with communication constraints. The organization of this paper is given in Figure 3. To be more spe-
cific, Section 2 presents the background of DF over SNs where some popular distributed filters are reviewed, fol-
lowed by some basic knowledge of typical communication constraints. Section 3 reviews the recent progress on the
DF issues for time-invariant systems. Section 4 further gives some latest results on the recursive DF schemes. In Sec-
tion 5, two applications of DF are provided. Finally, the conclusion is drawn and some possible future research direc-
tions are presented in Section 6.
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Figure 3. Organization of the survey.

2. Background on Distributed Filtering over SNs and Typical Communication Constraints

This section is concerned with the introduction about the background on DF and typical communication con-
straints. We shall review sequentially the architecture of SNs, the mathematical descriptions of some widely investi-
gated DF approaches, and some typical communication constraints.

2.1. Background on Distributed Filtering for SNs

In this subsection, we focus our attention on the basic knowledge of DF issues over SNs. To begin with, let us
consider a linear discrete-time system as follows:

Xs+1 = ﬂsxs +Bsws (1)

where s € N is the sampling instant; x; € R™ is the vector of system state; w, € R"™ is the process noise; and A, and
B, are known time-varying matrices. Assume that system (1) is monitored by an SN with N spatially distributed sen-
sor nodes. The communication among sensor nodes is conducted based on a fixed communication topology repre-
sented by a directed graph G = (V,E,H). Here, V = {1,2,...,N} is the set of sensors nodes. & C VXV is the set
of edges. A directed edge (i, j) € & means that node i can receive information from its neighboring node j.
H = [;j]nxn denotes the weighted adjacency matrix with «;; > 0 if (i, j) € &, otherwise a;; = 0. Furthermore, the
neighboring set of node i is represented by N; = {j € Vla;; > 0}.
The measurement output of the i-th sensor node is modeled by

yi,s = Ci,s-x: + Z)i,svi,s (2)

where v;; € R™ denotes the measurement noise; y; , € R™ represents the measurement output generated by the i-th
sensor node; and C; ; and D; ; are known time-varying matrices.

Next, we shall establish the distributed filter structure for system (1). Throughout this paper, X, and ¥;, are,
respectively, defined as the actually derived state estimate and the received measurement of sensor j, L;;, K;;, L;, and
K; are the filter gains to be designed. Based on the literature review, the existing distributed filters can be classified
into three arguably representative types listed as follow:
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Adjacent-measurements-based distributed filter. This type of distributed filter has the following form [11,
12,41]:

Rigr1 = Li%i, + Z @Ky s 3)
JEN;

where ) iy, @i;K;; ;s represents the aggregated measurements from all neighbors j € NV; of sensor i.
Adjacent-estimates-based distributed filter. The distributed filter based on adjacent state estimates is described

by
Rise1 = Z a;iLij(Zi s — %j5) + KiJig 4
JEN;
as shown in [42] or
Risr1 = AZis+ Z @;iLij(%i s — %j5) + Ki(Fis — Ciki5) )
JEN;

as presented in the literature [30,43—45], where > jen, @ijLij(Xi s — X;5) represents the state-estimate-associated inno-
vation term from all neighbors of sensor i.

Adjacent-measurements & estimates-based distributed filter. The distributed filter based on both state esti-
mates and adjacent measurements is given as Table 1.

Table1 The distributed filters based on both adjacent measurements and estimates.

Types of distributed filters References
Riser = A+ ien, @ijKijG s = CiRjs) [46-48]
Ris+1 = Askis+ ZjeN,- @ijLij(%is — Xjs) + ZjENi @jKij(¥s —Cj%js) [49-51]
Ris+1 = Z,ieN,- a;jLijXjs+ ZjeNi @;jKijyjs [10,29,52,53]
Rise1 = Y jen; iLijRis + Y jen; @iKij§js = Ciks) [9,54]
Ris+1 = Z./eNf @;j(ARis + Kj(§s = Cjkjs)) [55,56]

Compared with the centralized estimation algorithm, the distributed estimation algorithm takes the communica-
tion topology of SN into account. Thus, in the DF framework, the desired state estimate of each sensor node is gen-
erated based on the information of both the individual node and the related neighboring nodes.

2.2. Background on Typical Communication Constraints

In almost all practical applications, the underlying plants are always described by dynamical systems with cer-
tain complexities such as nonlinearities, saturation and sensor faults. Such complexities are always known as tradi-
tional engineering complexities, which would pose significant challenges to the corresponding filtering problems. For
example, as a ubiquitous feature existing in real-world scenarios, the nonlinearity would contribute significantly to the
complexity of system modeling. Since nonlinearities may cause undesirable dynamic behaviors such as oscillation or
even instability, the analysis and synthesis problems for nonlinear systems have long been the main stream of
research topics. The state saturation is another frequently encountered phenomenon in engineering practices due
mainly to inherent physical limitations of components. Moreover, the state saturation is inherently nonlinear, thus
would render the traditional linear-system-based optimal filtering algorithms inapplicable. As such, dedicated efforts
have been made to account for the saturation phenomenon with the aim to preserve the corresponding filtering per-
formance. Sensor faults denote the abnormal situations on the sensors, which would normally bring in unexpected
variations in the system measurements. Note that the filtering process should be implemented based on the received
measurement data. Hence, the DF scheme should be designed with the full consideration of fault signals, which gives
rise to certain challenges to the design of filter structures and parameters.

As described in Section 1, the utilization of communication networks would lead to network-induced phenom-
ena (also known as network-induced complexities). These complexities would seriously affect the measurement sig-
nals received by the filters, thereby posing extra challenges to the design of the distributed filters. To effectively miti-
gate undesired phenomena and use limited network resources, communication protocols are often employed to the
network-based communication scenarios to allocate the network access. The appearance of network-induced phe-
nomena and the utilization of communication protocols undoubtedly play important roles in regulating transmission
behaviors of the network signals and degrade the filtering performance. The aforementioned factors can be regarded
as communication constraints (induced by non-ideal networks) which deserve deep investigation in designing the dis-
tributed filters. In what follows, communication constraints are generally divided into three types with related mod-

4



1JNDI, 2023, 2(2), 100007. https:/doi.org/10.53941/ijndi0201007

elling methods.

2.2.1. Type I Transmission-Associated Constraints

The time delays, packet dropouts and packet disorder are three commonly encountered phenomena in engineer-
ing practice which are, respectively, introduced in the following paragraphs.

Transmission delays. In most networked control systems, time delays are inevitably encountered during the
signal transmissions owing mainly to the remote transmission distance and the limited network bandwidth, see e.g.
[57—-62]. In the framework of SNs, measurements subject to time delays with respect to sensor j are denoted as y 4,
where 7 stands for the delay length that could be time-invariant or time-varying. Note that transmission delays are
most likely to occur randomly which, if not properly handled, might result in performance degradation or even insta-
bility of the overall system. In recent years, some initial results concerning transmission delays over SNs have been
available, see [22,41,63—65]. For example, a weighting average H., method has been used in [41] to design a proper
distributed ET filter over wireless SNs with time-varying delays.

Packet disorder. The so-called packet disorder is another challenging issue which frequently occurs in the com-
munication process. Such kind of phenomenon means that packets violate the first-in-first-out principle during the
sensor-to-filter transmissions. To put it differently, although a certain packet is sent earlier, it might be delivered to the
destination later. Such an issue would profoundly affect the resultant filtering performance. Till now, the filtering
issue subject to packet disorder has stirred some initial investigative attention, and some preliminary outcomes have
been reported, see e.g. [59,66—69]. For instance, the H., filter design issue has been investigated in [69] for a class of
discrete-time systems, where the impacts of packet disorder have been fully considered.

Packet dropouts. During the data transmission over communication channels, the packet dropout phenomenon
may occasionally occur due to probabilistic link failures and network congestions. In the existing literature, the most
popular model to describe packet dropout is the Bernoulli distribution model presented as follows:

Vijs = OisYjs (6)

where g; ; is a binary random variable taking values in the set {0, 1}. A zero-order holder is usually adopted to com-
pensate the effect from packet dropouts. In this case, the available measurement is characterized by

Vs = 0isYjs + (1 = 0i )¥ijs-1- @)

The problem of filtering has been extensively studied for dynamical systems over SNs subject to missing mea-
surements, see e.g. [8,10,29,43,70]. Specifically, the problem of DF has been investigated in [70] for switched posi-
tive systems over SNs with randomly varying nonlinearities and packet dropouts, where sufficient conditions have
been presented to guarantee the existence of the required filter.

2.2.2. Type II Quantization-Associated Effects

To improve the data security and alleviate the communication burden, quantization effects and encoding-decod-
ing mechanisms are used to facilitate the data transmissions, which can be represented by the following unified
model:

Vijs = Vis T €ijis (®

where §;;, is the measurement received by the neighboring filter 7; and ¢;; ; is the corresponding quantization/coding-
decoding error.

Quantization. In the networked environment, the output signal is commonly quantized before being transmitted
over the communication network due to the limitation of communication capacity and network bandwidth. The
unavoidable deviation between the quantized signal and the raw signal is known as the quantization error which may
further lead to performance deterioration. Therefore, it is essential to take into account the side-effects of the quanti-
zation process onto the filtering analysis and synthesis issues. Roughly speaking, the quantization process can be
described as follows:

)71‘_;;5 = ER(yj,s) (9)

where R(-) denotes the quantization function with the predetermined quantization level. Until now, much enthusiasm
has been devoted to the quantization problems, and many results have been published in the literature, see e.g.
[8,10,71-73].

Encoding-Decoding. To achieve the security of the data transmission and improve the communication effi-
ciency, it is essential to construct a pair of suitable encoder and decoder, which can significantly suppress the effect of
the resultant data disturbance on the system performance. To date, the filtering/control problem under encoding-
decoding schemes has attracted growing research interests, see e.g. [74,75,77—81] and the references therein. The
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general form of an encoding mechanism is modelled by

O = X(Xir) (10)
and the corresponding decoding mechanism is characterized by

X =F (Or) (11)

where X7 is the decoded value of % at instant I7; 6, (I=1,2,...) is the codeword generated at the encoding
instant [7; 7 is a constant representing the encoding period; X(-) denotes the encoder function; and 7 (-) denotes the
decoder function. Recently, some initial research interests have been devoted to the DF problem subject to the encod-
ing-decoding effects [28,51,78,82—84].

2.2.3. Type III Scheduling-Associated Mechanisms

Communication scheduling strategies can significantly alleviate network congestions and extend the lifetime of
sensors, and thus have become one of the most powerful strategies to reduce resource consumptions [85]. The
scheduling methods can be performed in a periodic, acyclic or random manner such that transmissions are activated
only when some specific events occur. It is not surprising that the DF problem over SNs under the effects of commu-
nication scheduling has received more and more attention from researchers. The representative communication
scheduling strategies under consideration include the SC protocol, the WTOD protocol, the RR protocol, as well as
the ET mechanism, all of which can be described by the following unified model:

Yis = { %zil, :)fth(il;:vise (12)
where ¥, , is the received measurement from the neighbor of sensor node i; and ¢, ; (h = 1,2,3,4) denote the prede-
termined scheduling functions based on certain practical requirements. In the following, we are going to separately
introduce the mechanisms of the mentioned four protocols.

RR protocol. The RR protocol is a static scheduling mechanism which commonly used in token ring networks.
The transmission rule ¢, ; has the following form:

@15 i=mod(s—1,n)+1. (13)

The network nodes are assigned the access opportunities to the communication networks according to a fixed circu-
lar order. The communication network can only be accessed by one network node that is in possession of the token.
To date, numerous research results have been reported on the impact of the RR protocol over SNs [16,26,34,36].

WTOD protocol. The WTOD protocol is a dynamic scheduling mechanism that assigns the access opportuni-
ties to the communication network based on the difference between the current data and the last transmitted data of
the concerned node. To be more specific, the network access is assigned to the node with the largest weighted devia-
tion from the last reported value, and the transmission rule is given as follows:

. 2
$os i =argmax;e o llyis = Viglly (14)

where y; ; is the measurement at the latest time s{; and W represents the weighted parameter. The WTOD protocol
has been first presented in literature [86], where the scheduling principle of this protocol has been discussed. Since
then, the WTOD protocol has been extensively researched [72].

SC protocol. Another protocol is the SC protocol, which is also referred to as the random access protocol. The
transmission rule is presented by ¢s, € {1,2,...,n} with >°°" P{¢s ; = il¢h5,_; = j} = 1. This protocol is featured by
the fact that all nodes are allowed to get the network access with certain probabilities. When the network is idle, the
node with the highest priority obtains the network access. For each node that intends to transmit data, an acknowl-
edgment from the communication channel would be obtained to verify if the channel is available or not. The com-
munication channel is unavailable if the channel is accessed by other network nodes. In this case, the node trying to
transmit data will notice the conflict and wait for the next opportunity to access the network in accordance with a cer-
tain conflict rule [5,30,87,88].

ET schemes. To lighten the communication burden, the ET-based filtering strategies have been particularly
studied for networked control systems [89—94]. Typically, a quadratic cost function dependent on the time, system
state or sampled data is used to describe the ET condition. Note that this cost function shows the difference in abso-
lute or relative inaccuracy between the most recently transmitted information and the actual state/measurement infor-
mation. The mathematical model of the ET condition is described by

¢4,s = g(yi,sa wi,s) <0. (15)
Here, the event generator g(y;,, ;) : R XR™ XR — R determines whether or not the current measurement y;
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needs to be sent in comparison with the last transmitted measurement y; ; at the transmission instant s;; and v; , is
generally defined as i, ; = y; ; — y; ¢, Which represents a gap.

3. Time-Invariant Distributed Filtering Subject to Communication Constraints

This section focuses on several efficient DF algorithms for various time-invariant systems over SNs with con-
strained communications.

3.1. H,, Filtering

For systems undergoing energy-bounded noises, the H,, filtering technique has proven to be a powerful tool in
providing an L,-gain disturbance rejection constraint that characterizes the sensitivity performance. For a system sub-
ject to additive type energy-bounded noises @, and ¥, the corresponding H., performance constraint is defined as
J1 <0 under zero initial conditions, where

J éE{iuzsnz—yz(inw+iuaxn2)}. (16)
s=0 5s=0 s=0

Here, v > 0 is a disturbance attenuation level, and z; is the estimation error. The response quality of the estimation
error dynamics can be evaluated by ensuring J; <<0 with a small disturbance attenuation level y. A possible defini-
tion of optimality in this sense is to minimize the performance level y under the constraint J; <0.

The past few decades have witnessed increasing research interests to the investigation of the distributed H.,, fil-
ter design issues subject to different communication constraints [35,65,95]. For instance, the distributed H., filtering
algorithms have been established for systems suffering from saturation constraints [95,96], where the sensor/actuator
saturations are converted into certain bounded nonlinear conditions. In addition, some effective DF schemes have
been proposed in the literature for handling networked systems with various scheduling-associated mechanisms. Par-
ticularly, the distributed filters have been elaborately designed in [34,96] by utilizing the time-delay approach and in
[97] by resorting to the periodic system analysis method. Moreover, the finite-time distributed H., state estimation
problem has been investigated in [26] for a class of nonlinear systems subject to the RR protocol over fading chan-
nels.

Note that the time-delay phenomenon occurred in communication will affect the dynamics of filtering errors,
and thus the analysis of performance can be carried out by putting some time-related terms in the Lyapunov func-
tionals to reveal the effect of time delays. We refer readers to [65,98,99] for some graceful and elegant outcomes on
various time-delayed systems. As an example, in [98], a full-order channel-dependent estimator has been developed
to provide reliable state estimates under transmission delays and channel switching. In [99], a delay-fractioning
method has been utilized to deal with the ET distributed state estimation problem for stochastic nonlinear systems.
Based on multiple Lyapunov functional methods, a distributed H., filter has been constructed in [65] by resorting to
the convex optimization.

When it comes to nonlinear systems, the distributed H., filtering problem has been considered in [100] for a
series of Takagi-Sugeno fuzzy models over SNs with quantization effects and switching topologies. In this work, the
desired distributed filter gain and the permitted noise rejection level have been obtained with the help of the average
dwell time approach. Furthermore, a similar result has been reported for discrete-time Markov-hop Lur'e systems in
[27] with the use of a Lur'e type Lyapunov function, where the transmission model has the ability to describe the ran-
domly occurring packet dropout and signal quantization under redundant channels.

3.2. Hy/H,, Filtering

As an important performance index of the target plant, the H, specification has been extensively utilized in con-
trol/filtering communities. From the viewpoint of optimal control and filtering, the desired H, controllers or filters can
be designed by optimizing certain linear quadratic functions (namely, the cost functions) according to the inherent
features of underlying disturbances [75]. For the system with the stochastic noise, the corresponding H, performance
is defined as

J> = imB{IZ, ), (17)
and the purpose of the H, filtering is to design the filter such that the J, (or the upper-bound for J,) is minimized.
The combination of H, and H,, performance specifications gives rise to the so-called H,/H,, scheme that has signif-
icant advantages in depicting the performance accuracy with mixed disturbances and sustaining the optimality and
robustness against disturbances simultaneously [101]. As such, the mixed H,/H., scheme would provide a better
performance than a separate H, or H,, scheme. Inspired by the initial work in [102], the H,/H., strategy has been
extensively investigated to address multi-objective optimization problems with a variety of applications that can be

7
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found in [101,103].

Thanks to its superiority in evaluating the resultant accuracy, the H,/H., method has been employed to cope
with the control and filtering issues over SNs during the past decade [104,105]. In [104], a mixed H,/H,, control
method has been proposed for an uncertain system over SNs with random time delays, packet dropouts, and sensor
faults so as to solve the multiple-objective control problem. The H,/H., estimation performance over SNs has been
analyzed in [105], where ET scheme-based signal selection method has been developed to deal with network-induced
packet disorders and packet dropouts. The distributed mixed H,/H,, fusion estimation problem has been investi-
gated in [106] for a class of networked multi-sensor fusion systems with limited communication capacity. A novel
strategy has been proposed to reduce the transmission traffic, and an optimal fusion criterion on the distributed mixed
H,/H., fusion estimation has been established in terms of linear matrix inequalities (LMIs). Moreover, the dis-
tributed H,/H., filtering scheme has been adopted in [107] for the considered continuous-time systems in the pres-
ence of bounded power uncertainties and stochastic white noises.

3.3. I, Filtering

The I,—I, filtering (also known as energy-to-peak filtering) is an effective technique to guarantee the peak fil-
tering error subject to the energy-bounded noises [108—110]. Under the zero-initial condition, the /,—[., performance
constraint is defined as J; <0, where

Js 2 supllzlF =12y (1@l +117,17). (s)
s=0

5s=0

Here, Z, is the filtering error, 7 is the energy-to-peak performance index, and sup, -, ||Z,|| is the peak value of the esti-
mation error. Different from the H,, filtering whose aim is to suppress the energy of the resultant filtering error sub-
ject to the energy-bounded noises, the I,—I, filtering intends to ensure a relatively small amplitude of the filtering
error (in the sense of peak value of the filtering error) subject to the energy-bounded noises. Note that the ,—/., filter-
ing approach is recognized as a generalized form of the H, filtering method or a deterministic form of the Kalman
filtering (KF) structure [111].

To date, the distributed /,—1 filtering issue has attained particular concerns from many researchers and a large
body of literature has appeared on this topic, see e.g. [112,113] and the references therein. In [112], the distributed
non-fragile /-, filtering issue has been investigated for a class of discrete-time nonlinear systems with fading mea-
surements and random gain variations. The /—[, state estimation issue has been studied in [113] for nonlinear cou-
pled networks over redundant channels under RR protocols, where both the l,—I., performance level and the expo-
nential stability of the estimation error dynamics have been ensured.

4. Recursive Distributed Filtering Subject to Communication Constraints

This section presents some effective approaches to addressing the recursive DF problems over SNs subject to
communication constraints.

4.1. Recursive Distributed Variance-Constrained Filtering Subject to Communication Constraints

The classical KF is particularly useful for estimating the states of linear Gaussian systems, where the system
parameters and the statistical information of noises are exactly known. Roughly speaking, the Kalman filter of a
recursive form (known as an optimal filter) can provide the minimum mean-square error (MSE) estimation for the
considered linear systems. The renowned Kalman filter has been first developed in the seminal work [114]. Ever
since then, the KF algorithm has been gaining recurring research interests in both signal processing and automatic
control communities due primarily to its widespread applications in tracking systems, automated surveillance sys-
tems and power systems [115—117].

To improve the robustness of the traditional KF algorithm, the variance-constrained filtering strategy has been
proposed for systems with parameter uncertainties and modelling errors [118,119]. Noting that the idea of the vari-
ance-constrained filtering is to construct an appropriate filter with which the minimum upper bound can be ensured
on the estimation error variance. Great progress has been made over the past few years on the variance-constrained
filtering problems over SNs with communication constraints [7,22,31,70,120]. For instance, in [7], the recursive DF
issue has been studied for a series of discrete time-delayed stochastic systems with both deception attacks and uni-
form quantization effects. In [15], the resilient DF problem has been concerned for a class of time-varying multirate
systems over SNs subject to time-correlated fading channels.

Till now, the variance-constrained filtering problems subject to communication protocols have drawn a surge of
research interests with fruitful results [5,14,16,38,120—122]. In particular, the recursive DF problem has been studied
in [122] under a dynamic ET mechanism, where the measurement output is monitored by an SN whose topology is
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connected through Gilbert-Elliott channels managed by a set of Markov chains. In [16], the recursive DF problem has
been investigated for stochastic discrete time-varying systems subject to both RR protocols and state saturations over
SNs. In [17], the variance-constrained DF issue has been addressed for time-varying systems under deception attacks
and WTOD protocol. In [121], the ET Kalman consensus filtering has been exploited to solve a two-target tracking
issue over SN.

4.2. Recursive Distributed Finite Horizon H, Filtering Subject to Communication Constraints

Unlike the classical KF algorithm that can derive the minimum MSE estimation, the H., filtering is capable of
ensuring satisfactory estimation accuracy of the underlying systems with energy-bounded noises, thereby enhancing
the robustness of the filter. As such, the H,, filtering scheme has become a nice choice when dealing with the estima-
tion problem for systems experiencing energy-bounded disturbances.

Note that the distributed filters mentioned in Subsection 3.1 are designed over certain infinite time interval.
Nevertheless, in many practical situations, a finite-horizon filter can provide a better transient performance for the fil-
tering error dynamics especially when the noise inputs are non-stationary. Therefore, it is of great importance to deal
with the DF problems over a finite horizon. Recently, a wealth of literature has been published on the topic of the
finite-horizon H,, filtering issues over SNs [9,10,40,64,73,123].

In response to the popularity of SNs with comminution constraints, the distributed finite-horizon H., state esti-
mators have been designed for systems subject to various network-induced complexities, such as multiple missing
measurements [9,10,76], quantization errors [10,73], transmission delays [64], and communication protocols [64,76].
In these results, based on the H., scheme, the relation between the external inputs (including the disturbances and ini-
tial states) and the resultant estimation performance has been elaborately discussed in the framework of DF over a
finite horizon.

In [9], the distributed H., consensus filter has been designed under multiple packet dropouts by using the LMI
technique. Based on the solutions to a series of recursive LMIs, a distributed filter for a series of stochastic systems
has been designed in [76] such that both the H., requirement and the variance constraint are satisfied over a given
finite-horizon against successive packet drops, stochastic noises as well as random parameter matrices. The DF issue
has been analyzed in [10] for a series of time-varying systems with successive packet dropouts and quantization
errors. The distributed finite-horizon H,, filtering problems subject to communication protocols have been further
studied in [64,76,124—128].

4.3. Recursive Distributed Set-Membership Filtering Subject to Communication Constraints

When SNs are susceptible to deterministic norm-bounded noises, the distributed KF or H,, filtering might be
impractical to ensure satisfactory performance and, accordingly, the distributed SMF is recognized as a favorite can-
didate. Different from the conventional point-wise filtering strategy that generates a point estimate of the system state,
the SMF method is capable of providing a set of compact regions which contain all possible real states. The dis-
tributed SMF has recently aroused considerable research attention due to its distinct merit in tackling systems with
unknown-but-bounded noises.

There is no doubt that the existence of communication protocols and network-induced phenomena will signifi-
cantly complicate the corresponding SMF problem. So far, a large number of results have been available on the dis-
tributed set-membership state estimation subject to network-induced phenomena [11,12,28,78,129,130]. For instance,
the distributed SMF scheme has been developed for systems with sensor saturations [11], where the distributed filter
has been designed to ensure the desired average filtering performance over lossy SNs. In addition, the set-member-
ship filter design issue has been studied in [78] for an array of time-varying systems over SNs with an encoding-
decoding mechanism. On the other hand, the SMF problems have also been extensively studied over SNs under
communication protocols [12,13,32,36,129—131]. More specifically, based on the interval mathematical theory, a
recursive distributed set-membership filter has been designed in [13] for a class of general discrete-time nonlinear
systems under ET protocols. In [32], the distributed SMF issue has been studied for a series of time-varying multi-
rate systems over SNs under RR protocols. With the aid of an effective recursive LMI method, the distribution SMF
issue has been reported in [ 130] for nonlinear systems subject to the ET mechanism and saturation effects.

4.4. Recursive Distributed Particle Filtering

The PF algorithm has become an extremely powerful method to solve the filtering issues for general nonlinear
systems with non-Gaussian noises. Notice that the basic idea of the PF scheme is to find a set of random samples
propagating in the state space to approximate the probability density function of the state of interests and further
obtain the state minimum estimation error variance. On account of their wide applicability, the distributed PF issues
over SNs have attracted growing attention from both academy and industry, and many important results have been
reported in the literature, see e.g. [19,20,132—135].
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Based on a diffusion-based scheme, the distributed PF problem has been investigated in [133] for nonlinear non-
Gaussian systems over SNs under the dynamic ET protocol. Here, both the local posteriors and the local measure-
ments are exchanged among sensor nodes according to the given network topology. To avoid the network overload, a
distributed PF algorithm has been proposed in [20] for target tracking systems over SNs. In this work, an average
consensus filter or forward-backward propagation strategy has been proposed in hope of saving energy and reliving
bandwidth burden during the information exchange. In [19], a global likelihood function has been estimated for each
node according to a consensus algorithm, and then the particle weights have been updated by using the derived likeli-
hood function. For location estimation problems over SN, a novel particle filter has been designed in [136] by incor-
porating a semi-supervised machine learning method which is dedicated to processing limited labelled training data.
The designed particle filter is efficient in handling dynamically changing characteristics of the considered system.

5. Application of Distributed Filtering

In this section, the proposed DF schemes over SNs are applied to target tracking systems and distributed grid-
connected power generation systems to show their effectiveness and feasibility.

5.1. Target Tracking Systems

A key issue in target tracking systems over SNs is to extract useful information (such as position information
and velocity information) by estimating the state of interests based on available measurements collected by the spa-
tially distributed sensors. As is well known, each sensor collects the local measurements as well as the estimates
and/or measurements from the neighboring sensors to generate an updated state estimate. To facilitate the informa-
tion extraction, there is a practical need to construct a suitable mathematical model to describe the target motion over
constrained networks, and this requires the establishment of efficient tracking algorithms for estimating true target
states. Nowadays, substantial attention has been paid to DF issues and their applications to target tracking systems. A
wireless-SN-based target tracking system is consisted of a mobile target and a number of wireless sensors. As pre-
sented in Figure 4, sensors can only broadcast their local estimates to neighboring sensors due to limited power,
memory, and computational capacities. Moreover, each sensor can both observe the moving target and gather local
estimates from neighbors to form an updated estimate so as to improve estimation accuracy of the target. For exam-
ple, the localization problem of distributed wheeled mobile robots over SNs has been studied in [25] by using the dis-
tributed ET-based filtering technique, where an algorithm with adaptive triggering thresholds has been proposed to
obtain the desired average transmission rate during tracking and estimation. In [121], the Kalman consensus filtering
algorithm has been applied to dual-target tracking problems over SNs, and the desired distributed filters have been
devised to track the interested targets. In addition, a distributed SMF algorithm has been provided in [137] for
dynamic target tracking systems based on a partial information transmission scheme, where better estimation and
tracking performance have been obtained with more available measurements.

Wireless monitoring region

Actual target trajectory
— — Estimation target trajectory

Figure 4. Mobile target tracking using a sensor network.

5.2. Distributed Generation Systems

In addition to target tracking systems, the distributed generation system is another important application of SNs.
Note that unintentional islanding has become a significant safety issue in distributed grid-connected power systems
(including distributed solar power and distributed wind systems). The unintentional islanding may create security
hazards, which may further produce severe electrical damage to user equipment and even harm to service personnel,
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and thus it is essential to detect and analyze them promptly for preventing security risks. In [138], the distributed
SMF strategy has been applied to the islanding detection issue of distributed grid-connected solar power systems,
where a suitable distributed ET-based estimator has been designed. The structure diagram of the distributed grid-con-
nected photovoltaic generation system is shown in Figure 5,where a circuit-breaker is used to establish the connec-
tion between the distributed grid and the solar photovoltaic generation system, i.e., the solar photovoltaic generation
system is working in a grid-connected or islanding manner. Furthermore, the distributed state estimation issue has
been addressed in [ 139] for large-scale power systems over networks subject to limited bandwidth constraints.

Current . . PWM: Pulse-Width Modulation
PWM e controller Islanding detection PCC: Point of Common Coupling
y PV: Photovoltaic

l Circuit- R: Resistor
Solar PV t breaker L: Inductor
System [ | PV inverter [— LC ESC Transformer —/—@ C: Capacitor

N Distributed
RLC Grid

Figure 5. Grid-connected PV generation system configuration.

6. Conclusions and Future Works

In this survey, the recent results on DF issues have been reviewed for dynamical systems subject to communi-
cation scheduling protocols and/or network-induced phenomena. Firstly, the basic backgrounds of DF over SNs
under communication constraints have been discussed by introducing mathematical models of different distributed
filter structures, communication protocols, and network-induced phenomena. Subsequently, the DF algorithms have
been surveyed for various networked systems over SNs undergoing communication constraints. Furthermore, two
applications of the DF issues have been further discussed. Some related research topics for further investigation are
listed as follows:

Security. In view of the inherent network opening-up, data transmissions via shared networks (especially for
over SNs) are vulnerable to cyber threats such as denial-of-service attacks, undetectable stealth attacks, replay attacks,
and false data injection attacks. The occurrence of cyber-attacks would lead to severe performance degradation or
even system disruption, which might further result in huge economic losses and social risks. Therefore, it is of great
importance to investigate the security issue over SNs.

Scalability and density. In many practical situations, numerous sensors are spatially deployed in a certain area
with the aim to monitor the target plant. As the number of sensor nodes in SNs becomes large, the communication
burden will be huge and, accordingly, the computation complexity of the DF algorithms will increase dramatically.
This fact inevitably limits the application of DF schemes in large-scale SNs. Therefore, it is imperative to develop
advanced DF algorithms to cater for the scalable requirements.

Energy-efficiency. Although there are some communication scheduling schemes capable of reducing energy
consumptions, the energy-efficient issue over SNs has not been well investigated. Therefore, it would be a promising
research direction to develop energy-efficient strategies over SNs capable of reducing energy consumptions while
maintaining satisfactory estimation performance.
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