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Abstract: The sampled-data systems have been extensively applied to practical engineering because the
digital signal shows great advantages in data transmission, storage and exchange. As a result, the analy-
sis and synthesis problems of sampled-data systems have attracted ever-growing research interest due
mainly to their significant application potential. On the other hand, the filtering or state estimation (which
intends to reconstruct real system states from noisy measurements) is viewed as one of the most funda-
mental research topics in the control community. Until now, a lot of research efforts have been devoted
to the filtering problem of sampled-data systems. The objective of the survey is to exhibit a systematic
review with respect to filtering and control methods for sampled-data systems under communication con-
straints. First, some effective filtering algorithms are given. Then, the recent advances are shown in the
filtering and control of sampled-data systems subject to network-induced phenomena based on the sam-
pling methods. Finally, some future research topics are given on state estimation of sampled-data sys-
tems.

Keywords: sampled-data system; communication constraints; periodic sampling; aperiodic sampling; fil-
tering

1. Introduction

In the past few decades, the networked control system has shown great application potential in many fields,
including the Internet of Things, chemical production and so on [1—5]. Different from the traditional point-to-point
connection, the critical components in networked control systems, such as sensors, state estimators, controllers and
actuators, usually transmit signals through shared wireless communication networks. The networked control system is
capable of remote operation and control, which further shows great advantages of low costs and easy installation.
Therefore, the networked control system has gradually become a research hotspot in the control community [6—12].
However, due mainly to the undesired constraints in wireless communication (e.g. the data processing capacity of
wireless devices and the limited network bandwidth), there would inevitably exist some network-induced phenomena,
such as the packet loss [13, 14], quantization [15, 16] and data saturation [17, 18]. As such, the traditional control and
filtering methods may be no longer applicable in networked control systems under communication constraints.
Therefore, many efforts have been devoted to the analysis and synthesis of networked control systems with commu-
nication constraints.

In networked control systems, filtering has been regarded as one of the most fundamental issues. In the existing
literature, many filtering methods have been developed with various performance indexes [19-26]. Typically, for lin-
ear systems subject to Gaussian distributed white noises, the classical Kalman filtering has been viewed as the most
effective filtering method since it achieves the globally optimal state estimation in the sense of the minimum filtering
error covariance [19]. When there exist nonlinearities and uncertainties in the stochastic systems, it is always difficult
to acquire the accurate filtering error covariance, which renders the traditional Kalman filtering invalid. In this case,
the robust recursive filtering has been chosen as an alternative method in which an upper bound is guaranteed for the
filtering error covariance [24]. In the case that the dynamic system is disturbed by the energy-bounded noises, the H.,
filtering method has been proposed such that the attenuation level of estimation errors against the exogenous noises is
guaranteed to be within a prespecified disturbance attenuation level [22]. Moreover, in the case that the noises can be
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limited into an ellipsoid, the set-membership filtering method has been developed such that the filtering errors are also
constrained in an ellipsoid [25, 26].

In practice, it is a common case that the concerned plant is described as a continuous-time system, whereas the
data is transmitted in a discrete-time digital form. This gives rise to the so-called sampled-data systems [27—29].
Since the sampled-data system can describe essential characteristics of practical engineering more accurately than the
continuous/discrete-time system, it has received ever-growing research attention [30, 31]. To transfer continuous-time
analog signals into discrete-time digital signals, sampling is an essential technique that determines whether the dis-
crete-time signal matches the original continuous-time signal. In traditional sampled-data systems, the sampling
period has been usually assumed to be a constant for the sake of simplicity. Unfortunately, due mainly to the unde-
sired external interference (such as the shake and clock error), it is technically difficult to adopt uniform sampling. To
cater for real requirements, many other sampling models have been proposed for sampled-data systems. Those avail-
able models include, but are not limited to, the bounded deterministic but uncertain sampling model [32, 33], the
stochastic sampling model [34, 35], the multi-rate sampling model [22, 36], and the event-triggering sampling model
[37, 38].

It should be mentioned that, the existing filtering methods have been mainly applied to continuous/discrete-time
systems, and found to be inefficient in dealing with the sampled-data system. This brings great challenges to tradi-
tional filtering methods. Nowadays, many effective methods have been proposed to transform the sampled-data sys-
tems into common continuous/discrete-time systems. Typically, the discretization method directly converts the sam-
pled-data system into the discrete-time system by utilizing the matrix exponential technique [10]. In the input-output
method, the sampling period is viewed as the time delay and the sampled-data system is further equivalently denoted
by the time-delay continuous-time system [39]. For multi-rate sampled-data systems, the lifting technique is the most
popular method that transforms the multi-rate sampled-data systems into single-rate systems [40]. By utilizing these
heuristic methods, many significant research results have been obtained on the filtering of sampled-data systems
under communication constraints.

In this paper, we aim to provide a systematic review of the existing results on filtering problems for sampled-
data systems with communication constraints. The remainder of this paper is outlined as follows. In Section 2, the
traditional filtering method is presented. In Section 3, research results are discussed on filtering and control of sam-
pled-data systems. Section 4 provides the conclusion and the future research topics.

2. Filtering of Networked Control Systems

Filtering is a method that reconstructs real system states from noisy measurements. Nowadays, many efforts
have been devoted to developing high-accuracy and easy-to-implemented filtering schemes. The typical research
results are listed as follows.

2.1. Kalman Filtering and Its Variants

In the traditional Kalman filtering proposed in [19], the globally optimal state estimate has been obtained in the
minimum mean square error variance sense. Such a filtering method is able to be online implemented because the
minimum filtering error covariance is derived by recursively solving the Ricatti difference equation. In this case, the
Kalman filtering has gained much research attention [41—52]. Typically, the boundedness stability has been analyzed
in [51] for Kalman filtering with intermittent measurements. Moreover, the probability that the filtering error covari-
ance is bounded has been investigated in [52] over a packet-dropping network. In [41—43], constrained Kalman fil-
ters have been designed for state-constrained systems with equality/inequality constraints. In [53], a distributed Gos-
sip Kalman filtering method has been proposed for systems over sensor networks. In [54—56], the Kalman-consis-
tency filtering has been proposed by combining the traditional Kalman filtering method with the consistency algo-
rithm.

When there exist nonlinearities or uncertain parameters, the classical Kalman filtering is usually inappropriate
since it is usually technically impossible to obtain accurate filtering error covariances. Thus, many variants have been
developed to broaden the application scope of the Kalman filtering, such as the extended Kalman filter [57—60],
unscented Kalman filter [61—64], cubature Kalman filter [23, 65—67] and the robust recursive filter (RRF) [24,
68—73]. Among them, the RRF has received particular research attention due mainly to its robustness. In the RRF, an
upper bound is guaranteed on the actual filtering error covariance and further minimized by designing the filter gain
properly. In [71—73], the RRF has been designed for stochastic nonlinear systems. In [24, 70], the RRF has been pro-
posed for a class of uncertain systems where the uncertainties have been described by a class of norm-bounded
uncertain matrices. In [68, 69], the RRF design problem has been considered for two-dimensional systems.

2.2. H, Filtering
When the considered systems are subject to deterministic but energy-bounded noises, the H., filtering method
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has been proposed such that the prescribed attenuation level of estimation errors against the exogenous noises can be
reached [74—79]. In [74, 76, 77], the event-based H., filtering problem has been investigated where the existence
condition of the filter has been presented by a class of linear matrix inequalities. In [80, 81], the H., filters have been
constructed for the sampled-data systems based on the aperiodic sampling period. In [82—84], the H., filtering prob-
lem has been discussed for a class of multi-rate sampled-data systems where the lifting technique has been employed
to accommodate the multi-rate sampling. In [63, 85], the distributed H., filtering problem has been considered for the
networked control systems with network-induced phenomena.

2.3. Set-Membership Filtering

The aforementioned Kalman filtering and the H., filtering both belong to the so-called point estimation where
the state estimate is derived exactly. Contrarily, the set-membership filtering is a kind of interval-based state estima-
tion method, and only obtains a reliable geometric domain to contain the state estimate. Nowadays, many set-mem-
bership filtering methods have been proposed by utilizing various of geometric domains [25, 86—96]. Typically, in
[89, 90], the set-membership filters have been constructed for discrete-time systems where the intervals have been
adopted to contain the state estimate. In [87, 88, 91, 92], the set-membership filtering methods have been developed
such that the state estimates have been included into a class of ellipsoids. In [86, 94, 96], a new type of set-member-
ship filtering method, named the zonotopic set-membership filtering method, has been proposed where the zonotopes
and zonotope-based operations have been embedded in the set-membership filtering algorithms.

3. Filtering and Control for Sampled-data Systems

In reality, many networked control systems (NCSs) can be typically represented as continuous models. With the
development of microelectronics and digital technologies, the method (of sampling continuous analog signals and
converting them into discrete digital signals) has been widely used in industrial control, network communication,
voice transmission, image processing and other fields. In this case, a special kind of NCSs, called the sampled-data
system, has begun to attract ever-growing research attention. In what follows, we will make a brief overview of the
latest results on filtering and control problems for sampled-data systems.

3.1. Periodic Sampling

In the traditional sampling method, the sampling period is usually assumed to be a constant for the sake of sim-
plicity. Based on the periodic sampling method, a sampler is usually used to periodically sample the measurement
information that is employed as the input of the filter and controller.

Consider the following continuous-time system:

{;‘C(t) = Ax(?) + Bw(t), |
y(t) = Cx(t) + Dv(1) (1)

where x(f) and y(f) are, respectively, the state and measurement outputs, w(f) and v(¢) stand for the disturbance
noises, and A, B, C and D are known matrices with appropriate dimensions. Before being transmitted to the filter, the
measurement y(¢) is periodically sampled by a sampler. Thus, the following sampled-data system is further obtained.

{J'c(t) = Ax(t) + Bw(t), 2
V(1) = Cx(ti) + Dv(1)
Define the constant sampling period by

T=t—1 (3)

where £ is the k-th sampling time instant.

In recent years, the analysis and synthesis problems of sampled-data systems with periodic sampling have
received extensive research attention [97—105]. For example, in [97], the lifting technique, which converts a continu-
ous signal into a discrete signal sequence according to the sampling time instants, has been adopted to convert the
continuous-time system into an equivalent discrete-time system. Based on the sampled discrete-time signal, an H,,
sampled-data controller has been further designed. In [98], the exponential stability has been studied for periodically
sampled-data systems in the case of control input loss. Sufficient conditions for exponential stability have been
obtained. Moreover, the effects have been analyzed quantitatively from the sampling period, exponential parameters,
nominal packet loss rate and actual packet loss rate on the system stability. In [99], the linear quadratic control prob-
lem of periodic systems has been transformed into a sampled-data output feedback control problem, where an opti-
mal periodic controller has been designed when the system suffers from incomplete information or measurement
delays. In [100], the sampled-data output feedback control problem has been considered for a class of nonlinear sys-
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tems by discretizing the high gain continuous observer. Moreover, it has been shown that, when the sampling period
is sufficiently small, the performance of the continuous state feedback controller can be realized by a sampled-data
controller with a sampled-data observer. In [101], by obtaining the explicit analytical solution to the nonlinear differ-
ential equation, the considered nonlinear continuous system has been discretized by periodic sampling. The discrete
controller has been designed by using such a discrete model. Then, sufficient conditions have been obtained to stabi-
lize the sampled-data systems.

3.2. Aperiodic Sampling

In practice, it is usually difficult to achieve periodic sampling owing to the unavoidable interference, such as the
vibration of machines and the jitter of the pointer. In this case, the sampling period is essentially aperiodic or even
random. When the sampling period has uncertainty and randomness, it will affect the performance of the concerned
dynamic system and bring essential difficulties in designing of filters and controllers. Therefore, it is of practical sig-
nificance to study sampled-data systems with aperiodic sampling methods (e.g. uncertain sampling [21, 27, 28, 32,
33, 106—111], stochastic sampling [30, 34, 35, 112—117], multi-rate sampling [31, 40, 118—123] and so on).

1) Uncertain Sampling

For the uncertain but deterministic sampling method, it is usually assumed that the sampling period is a
bounded unknown variable. More specifically, the unknown sampling period T = 1, — ¢, satisfies the following
constraints

T e (T,T) 4

where 0 < T < T are the bounds determined by the sampling error of the sampler.

Nowadays, a rich body of research results have been obtained on the sampled-data systems with uncertain sam-
pling. For example, the synchronization and state estimation problems have been investigated in [27] for a class of
singularly perturbed complex networks with uncertain sampling. By utilizing the Lyapunov functional and the Kro-
necker product method, sufficient conditions for the exponential synchronization have been obtained for the consid-
ered complex networks. In addition, estimator gains (that guarantee the exponential stability of the estimation error
system) have been further designed by adopting the matrix inequality technique. In [106], the sampled-data control
input has been transformed by employing the input-output method. By constructing a time-dependent Lyapunov
functional, the stability of the system has been guaranteed when the sampling period is greater than the given upper
bound. In [107], the fault estimation problem has been studied for non-uniform sampled-data systems. By utilizing
the input-output method, an augmented observer has been constructed to realize continuous fault estimation based on
non-uniform discrete-time sampled-data measurements, which has established the foundation for fault estimation
problems of non-uniform sampled-data systems. In [32], the discretization method has been used to convert the
uncertain sampling period into the uncertain system parameters. Multiple norm-bounded uncertain matrices have
been further employed in [28] to better describe the uncertainty caused by the sampling period.

2) Stochastic Sampling

In many cases such as the sampling of seismic data, the sampling usually occurs with a certain probability due
to the influence of noises, giving rise to random characteristics. Therefore, the sampling period should be described as
arandom variable following a specific probability distribution.

In [112], the optimal control problem has been studied for sampled-data systems by characterizing the sam-
pling period as a random variable obeying the Erlang distribution. More specifically, the sampling period T is mod-
elled as

T, =T+g; (5)

where T stands for the nominal sampling period. ¢, is the stochastic sampling error obeying the following probabil-
ity density function:

lu'KS’K— 1 eHs

S, Kow) = -1

,s>0 6)
where K € N is the shape parameter and u > 0 is the rate parameter.

In [113], a Bernoulli distributed random variable has been utilized to describe the sampling period. Through
converting the sampling period into time delays, a robust H., controller has been designed for the sampled-data sys-
tem with parameter uncertainties. It has been also pointed out that, the sampling period can also be assumed to switch
randomly among multiple modes. Concretely, it is assumed that the sampling period 7, satisfies

Pr{T =T} =4, Pr{T, =T1}=1-p 7



1JNDI, 2023, 2(3), 100011. https:/doi.org/10.53941/ijndi.2023.10001 1

where 0 < Ty < T, are known values, and 0 < 8 < 1 is a given constant.

Based on this method, a sampled-data synchronization controller has been designed to guarantee the exponen-
tial mean square stability of the dynamic network in [35]. Furthermore, in [114], a sampled-data controller with ran-
dom switching sampling periods has been designed in the case of data loss and adaptive time-varying delays. In [39],
the random sampling method has been used to sample the measurement output and a distributed H., filter has been
constructed based on the sampled measurement output. In [115], the state estimation problem has been considered for
neural networks with time-varying delays. By designing a sampled-data controller with random switching modes, the
globally mean-square exponential stability of the estimation error system has been guaranteed for neural networks
with random sampling. It is worth mentioning that, although the stochastic sampling has been considered in the exist-
ing literature, it has been always assumed that the sampling period switches randomly between two or more modes
with a certain probability, which is highly conservative. In [116], random variables following an arbitrary probability
distribution have been employed to model sampling errors in order to obtain a relatively perfect mathematical model.
Based on this model, a sampled-data controller has been designed to ensure the stochastic stability of sampled-data
systems.

3) Multi-Rate Sampling

In practice, it is usually difficult to ensure that each sensor has the same sampling period, and this gives rise to
the multi-rate sampled-data systems. The multi-rate sampled-data system is usually denoted as follows:

{X(Um) = Ax(ty) + Bw(t),

: . X 8
vi(ty) = Cix(t,) + Dv(t,), i=1,2,--- N ®)

where h = 1,1 — 1, is the sampling period of the plant, and #; = 1;, | — 1} is the sampling period of the ith sensor node.
Moreover, the sampling period /; satisfies &; = [;h where [; is a positive integer.

Due mainly to its great application potential, many important results have been obtained in filtering and control
of multi-rate sampled-data systems. For example, in [118], the optimal sampled-data controllers have been designed
for linear time-invariant systems with different A/D and D/A conversion rates. In [124], the consistency problem has
been studied for sampled-data systems with multiple A/D and D/A conversion rates, and the H, optimal controller
has been designed by utilizing the lifting technique. In [119], the H, and H., filtering problems have been studied
where the output sampling rate is slower than the state updating rate. It has been shown that the multi-rate sampling
will cause nonconvexity, which makes it very difficult to solve the linear matrix inequalities (LMIs). Furthermore, a
reduction algorithm has been proposed to solve LMIs with nonconvex constraints caused by the multi-rate sampling.
In [40], the Kalman filter has been designed for multi-rate sampled-data systems where the measured transmission
rate, estimated update rate and state update rate are all different from each other. In [31], the lifting technique has
been adopted to transform the multi-rate sampled continuous-time system into a discrete-time system. Moreover, the
state estimation and fault detection problems have been studied for the multi-rate sampled-data system. In [120, 125,
126], the fault estimation problem has been further studied for multi-rate sampled-data systems where the multi-rate
systems have been transformed into signal-rate systems. In [29, 127—130], the system identification and parameter
estimation problems have been studied for continuous-time systems by using the multi-rate periodic sampling
method. At the same time, the controllability and observability of the original system have been analyzed. In [22, 36,
131], the fusion state estimation problem has been studied for linear multi-rate systems over sensor networks. In
[132], the state estimation problem has been studied for nonlinear multi-rate systems with packet loss. In [133], the
set-membership filtering problem has been considered for multi-rate systems, and a zonotope that includes the real
system states has been obtained recursively.

4) Event-Triggering Sampling

Notably, the periodic sampling, the stochastic sampling and the multi-rate sampling methods can be classified
as the time-based sampling methods. Although simple to implement in practical engineering, the time-based sam-
pling methods also transmit redundant information, which takes up a lot of communication resources, especially
when communication bandwidth and energy are limited. An event-triggered mechanism based sampling method is
able to reduce the energy consumption and communication burden in signal transmission.

In [134], the event-triggering sampling method has been developed and further studied to solve the event-trig-
gered PID control problem. In the event-triggered mechanism (with an irregular execution mode), the current data
will not be transmitted until the triggering conditions are met, thus eliminating redundant information and reducing
transmission times to save transmission energy and communication resources. So far, much research attention has
been devoted to designing different types of event-triggering mechanisms such as the static event-triggering mecha-
nisms [37, 38, 135—137], self-triggering mechanisms [138—142], and adaptive-triggering mechanisms [143—145]. It is
worth mentioning that, a kind of dynamic event-triggering mechanism has been designed in [146] by introducing an
internal dynamic variable related to the system state or measurement. This mechanism can further reduce the trans-
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mission times and ensure the system performance. Due mainly to its outstanding advantages, the dynamic event-trig-
gering mechanism has attracted extensive attention [147—150]. Specifically, the control problem has been considered
in [151—153] where the event-triggering mechanism has been utilized to regulate signal transmissions. In [154—156],
the filtering problem has been studied where the data communication between sensors and filters has been executed
by the event-triggering mechanism. In [157—159], the fusion estimation problem has been discussed for multi-sensor
systems under the event-triggering mechanism. In [26, 160, 161], the event-based set-membership filtering problem
has been investigated for NCSs where the error induced by the event-triggering mechanism has been transformed into
the uncertainty bounded by ellipsoids.

Up to now, we have analyzed the related research results on the control and filtering problems of sampled-data
systems. In the next section, we will present some future research topics.

4. Future Work for Sampled-Data Systems

4.1. More Complex Sampled-Data Systems

Although many efforts have been devoted to the filtering problem for sampled-data systems, there are still many
problems to be solved. First, the stochastic sampling model is still very conservative, which should be expanded to
cater for real requirements. Then, the multi-objective filtering for sampled-data systems with stochastic sampling is
still a very challenging problem. Moreover, in multi-rate systems, the lifting technique is the most common method
that transforms linear multi-rate systems into single-rate systems. When there exist uncertainties and nonlinearities in
the systems, this method is no longer applicable, and thus new methods need to be developed. Finally, it is always the
case that different sampling methods may be adopted simultaneously in sampled-data systems. In order to describe
the sampled-data systems more accurately, various sampling methods should the considered at the same time,
whereas the sampled-data system with mixed sampling methods has not drawn enough attention due probably to the
underlying complexity and difficulty.

4.2. More Complex Network-Induced Phenomena

Although network-induced phenomena have been considered in sampled-data systems, there still exist some
challenging problems that should be considered seriously. Typically, in wireless networks, the transmission distance
of the signal sources (such as the sensor) is usually limited. In this case, signals broadcasted by signal sources may
not be successfully transmitted to the destination (the filter and controller). In order to assure the efficient signal
transmission, the relay network has been proposed where a relay (locating between the source and the destination) has
been adopted to assist signal transmissions. Due mainly to its great advantages in the long-distance wireless commu-
nication, the relay network has attracted a lot of research interest from communication communities [162—164].
Accordingly, many effective relay techniques have been proposed to cater for real engineering applications such as
the half-duplex relay, the virtual full-duplex relay and the full-duplex relay. Despite the fact that relay techniques have
shown their potential in improving the performance of wireless networks, they will inevitably complicate the process
of signal transmissions, and even cause signal distortion. Therefore, new filtering methods should be developed for
sampled-data systems to accommodate the relay networks. Undoubtedly, the development of the new method will be
a critical and challenging problem.
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