Downloads
Download


This work is licensed under a Creative Commons Attribution 4.0 International License.
This study investigates the potential biological effects of organic soluble fractions from the crude methanol extract of the leaf and bark of Bauhinia malabarica Roxb (B. malabarica), which is traditionally used for various ailments. Plant materials were collected, dried, and extracted using methanol. They were then extracted into aqueous fractions, carbon tetrachloride, chloroform, and petroleum-ether. The methanolic leaf extract demonstrated excellent antioxidant activity during the DPPH assay for antioxidant testing, with an IC50 value of 12.15 μg/mL, which is similar in efficacy to the standard ascorbic acid (IC50 = 5.8 μg/mL). The cytotoxicity assay was carried out using brine shrimp nauplii. All test samples of B. malabarica showed significant membrane-stabilizing activity as determined by the hemolysis induced by hypotonic solutions and heat. The plant samples from leaf extract and bark extract also exhibited significant anthelmintic and analgesic activity in a dose-dependent manner. These plant extracts exerted analgesic effects that were characterized by elongation of tail immersion time and reduction in abdominal writhes. The test samples reduced the quantity of diarrhea caused by castor oil in mice in a dose-dependent manner. Additionally, the extract extended the sleep duration and delayed the onset of action compared to the control group. Based on our findings, B. malabarica could be a rich source of bioactive compounds, meriting further exploration for its potential in traditional medicine.
References
- Cragg, G.M.; Newman, D.J. Natural products: A continuing source of novel drug leads. Biochim. Biophys. Acta 2013, 1830, 3670–3695. doi: 10.1016/j.bbagen.2013.02.008
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661. doi: 10.1021/acs.jnatprod.5b01055
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. doi: 10.1021/acs.jnatprod.9b01285
- Sharma, M.; Neerajarani, G.; Mujeeb, C.A.; et al. Antioxidant, antifungal and phytochemical analysis of Bauhinia malabarica: An in-vitro Study. Afr. J. Health Sci. 2014, 1, 1–13.
- Brauggler, J.; Duncan, C.A.; Chase, L.R.; et al. The Involvement of Iron in Lipid Peroxidation Importance of Ferrous to Ferric Ratio in Initiation. J. Biol. Chem. 1986, 261, 10282–10289. doi: 10.1016/S0021-9258(18)67521-0
- Filho, V.C. Chemical composition and biological potential of plants from the genus Bauhinia. Phytother. Res. 2009, 23, 1347–1354. doi: 10.1002/ptr.2756
- Kaewamatawong, R.; Kitajima, M.; Kogure, N.; et al. Flavonols from Bauhinia malabarica. J. Nat. Med. 2008, 62, 364–365. doi: 10.1007/s11418-008-0249-9
- Kittikoop, P.; Kirtikara, K.; Tanticharoen, M.; et al. Antimalarial paracemosols A and B, possible biogenetic precursors of racemosol from Bauhinia malabarica Roxb. Phytochemistry 2000, 55, 349–352. doi: 10.1016/S0031-9422(00)00318-6
- Modarresi, C.A.; Ibrahim, D.; Fariza, S.S. Antioxidant, Antimicrobial Activity and Toxicity Test of Pilea microphylla. Int. J. Microbiol. 2010, 2010, 826830. doi: 10.1155/2010/826830
- Thenmozhi, K.; Anusuya, N.; Ajmal, A.M.; et al. Pharmacological credence of the folklore use of Bauhinia malabarica in the management of jaundice. Saudi J. Biol. Sci. 2018, 25, 22–26. doi: 10.1016/j.sjbs.2017.08.001
- VanWagenen, B.C.; Larsen, R.; Cardellina, J.H.; et al. Ulosantion, a potent insecticide from the sponge Ulosa ruetzleri. J. Organomet. Chem. 1993, 58, 335–337. doi: 10.1021/jo00054a013
- Saeed, N.; Khan, M.R.; Shabbir, M. Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complement. Altern. Med. 2012, 12, 221. doi: 10.1186/1472-6882-12-221
- Brand, W.W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT–Food Sci. Technol. 1995, 28, 25–30. doi: 10.1016/S0023-6438(95)80008-5
- Shinde, U.A.; Phadke, A.S.; Nair, A.M.; et al. Membrane stabilizing activity-a possible mechanism of action for the anti-inflammatory activity of Cedrus deodara wood oil. Fitoterapia 1999, 70, 251–257. doi: 10.1016/S0367-326X(99)00030-1
- Meyer, B.; Ferrigni, N.; Putnam, J.; et al. Brine Shrimp: A Convenient General Bioassay for Active Plant Constituents. Planta Medica 1982, 45, 31–34. doi: 10.1055/s-2007-971236
- Zimmermann, M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain 1983, 16, 109–110. doi: 10.1016/0304-3959(83)90201-4
- Ezeja, M.I.; Omeh, Y.S.; Ezeigbo, I.I.; et al. Evaluation of the analgesic activity of the methanolic stem bark extract of Dialium guineense (Wild). Ann. Med. Health Sci. Res. 2011, 1, 55–62.
- Koster, R.; Anderson, M.; De, B.E.J. Acetic acid for analgesic screening. Fed. Proc. 1959, 18, 412–417.
- Shoba, F.G.; Thomas, M. Study of antidiarrhoeal activity of four medicinal plants in castor oil induced diarrhea. J. Ethnopharmacol. 2001, 76, 73–76. doi: 10.1016/S0378-8741(00)00379-2
- Ashok, K.B.S.; Lakshman, K.; Velmurugan, C.; et al. Antidepressant activity of methanolic extract of Amaranthus spinosus. Basic Clin. Neurosci. 2014, 5, 11–17.
- Hossain, M.M.; Hasan, S.M.R.; Akter, R.; et al. Evaluation of analgesic and neuropharmacological properties of the aerial part of Tinospora cordifolia miers. in mice. Stamford J. Pharm. Sci. 2009, 2, 31–37. doi: 10.3329/sjps.v2i2.5822
- Singh, N.; Rajini, P.S. Free radical scavenging activity of an aqueous extract of potato peel. Food Chem. 2004, 85, 611–616. doi: 10.1016/j.foodchem.2003.07.003
- Harman, D. Free radical theory of aging. Mutat. Res. 1992, 275, 257–266. doi: 10.1016/0921-8734(92)90030-S
- Ullah, M.O.; Haque, M.; Urmi, K.F.M.; et al. Anti-bacterial activity and brine shrimp lethality bioassay of methanolic extracts of fourteen different edible vegetables from Bangladesh. Asian Pac. J. Trop. Biomed. 2013, 3, 1–7. doi: 10.1016/S2221-1691(13)60015-5
- Sultana, T.; Mannan, M.A.; Ahmed, T. Evaluation of central nervous system (CNS) depressant activity of methanolic extract of Commelina diffusa Burm. in mice. Clin. Phytosci. 2018, 4, 1–7. doi: 10.1186/s40816-018-0063-1
- Fernando, T.S.P.; Madubashini, P.P.; Ratnasooriya, W.D. In vitro thrombolytic activity of Sri Lankan black tea Camellia sinensis (L.) O. Kuntze. J. Natl. Sci. Found. Sri Lanka 2008, 36, 179–181. doi: 10.4038/jnsfsr.v36i2.151
- Baliyan, S.; Mukherjee, R.; Priyadarshini, A.; et al. Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Molecules 2022, 27, 13–26. doi: 10.3390/molecules27041326
- Han, J.; Sun, M.; Cui, Y.; et al. Kushen flavonoids induce apoptosis in tumor cells by inhibition of NF-κB activation and multiple receptor tyrosine kinase activities. Phytother. Res. 2007, 21, 262–268. doi: 10.1002/ptr.2065
- Islam, M.; Jannat, T.; Kuddus, M.R.; et al. In vitro and in vivo evaluation of pharmacological potentials of Campsis radicans L. Clin. Phytosci. 2019, 5, 42. doi: 10.1186/s40816-019-0144-9
- Sutherland, I.A.; Leathwick, D.M.; Anthelmintic resistance in nematode parasites of cattle: A global issue. Trends Parasitol. 2011, 27, 176–181. doi: 10.1016/j.pt.2010.11.008
- Keiser, J.; Utzinger, J.; Efficacy of Current Drugs Against Soil-Transmitted Helminth Infections: Systematic Review and Meta-analysis. JAMA 2008, 299, 1937–1948. doi: 10.1001/jama.299.16.1937
- Sani, Y.M.; Musa, A.M.; Pateh, U.U.; et al. Phytochemical screening and preliminary evaluation of analgesic and anti-inflammatory activities of the methanol root extract of Cissus polyantha. Bayero J. Pure Appl. Sci. 2014, 7, 19–23. doi: 10.4314/bajopas.v7i1.5
- Serafini, M.R.; Santos, R.C.; Guimaraes, A.G.; et al. Morinda citrifolia Linn leaf extract possesses antioxidant activities and reduces nociceptive behavior and leukocyte migration. J. Med. Food. 2011, 14, 1159–1166. doi: 10.1089/jmf.2010.0254
- Shreedhara, C.; Vaidya, V.; Vagdevi, H.; et al. Screening of Bauhinia purpurea Linn. For analgesic and anti-inflammatory activities. Indian J. Pharm. 2009, 41, 75–79. doi: 10.4103/0253-7613.51345
- Shetti, A.; Kaliwal, B.B.; Hypoglycemic activity of ethanolic leaf extract of Phyllanthus amarus in alloxan induced diabetic mice. Eur. J. Exp. Biol. 2015, 5, 26–29.
- Gutierrez, S.P.; Mendoza, D.Z.; Peredo, C.S.; et al. Evaluation of the anti-diarrheal activity of Salvia connivens. Pharm. Biol. 2014, 52, 1467–1470. doi: 10.3109/13880209.2014.898076
- Kosala, K.; Widodo, M.A.; Santoso, S.; et al. In vitro and In vivo Anti-inflammatory Activities of Coptosapelta flavescens Korth Root’s Methanol Extract. J. Appl. Pharm. Sci. 2018, 8, 42–48. doi: 10.7324/JAPS.2018.8907