
Downloads
Download


This work is licensed under a Creative Commons Attribution 4.0 International License.
We have developed a non-close-packed type elastic colloidal crystal sheet through a simple shear-induced process. The colloidal crystal state, in which the (111) plane exhibited significant orientation due to shear stress, was successfully stabilized in the 4-hydroxybutyl acrylate (4-HBA) monomer precursor dispersed with desalted silica colloidal particles through the implementation of UV irradiation radical polymerization. Consequently, a solid colloidal crystal sheet was produced, capable of reversibly modulating its structural color in response to elastic deformation. In this article report will address the stress response functions of this sheet due to elastic deformation of stretching, compressing and bending. In addition, a rapid structural color change at 4.17 ms unit by impacting, and durability repeating elongating rubber sheet for 100,000 times are investigated for practical use. Since the fabrication of this elastic colloidal crystal material is easy to scale up, a low-cost manufacturing process is expected.
Keywords:
silica colloids poly (4-hydroxybutyl acrylate) elastomer non-close-packed colloidal crystal shear stress elastic deformation Bragg’s diffraction structural colorReferences
- Clough, J.M.; Weder, C.; Schrettl, S. Mechanochromism in structurally colored polymeric materials. Macromol. Rapid Commun. 2021, 42, 2000528. doi: 10.1002/marc.202000528
- Xie, M.; Hisano, K.; Zhu, M.; Toyoshi, T.; Pan, M.; Okada, S.; Tsutsumi, O.; Kawamura, S.; Bowen, C. Flexible multifunctional sensors for wearable and robotic applications, Adv. Mater. Techn. 2019, 4, 1800626. doi: 10.1002/admt.201800626
- Sandt, J.D.; Moudio, M.; Clark, J.K.; Hardin, J.; Argenti, C.; Carty, M.; Lewis, J.A.; Kolle, M. Stretchable optomechanical fiber sensors for pressure determination in compressive medical textiles, Adv. Healthcare Mater. 2018, 7, 1800293. doi: 10.1002/adhm.201800293
- Kolle, M.; Zheng, B.; Gibbons, N.; Baumberg, J.J.; Steiner, U. Stretch-tuneable dielectric mirrors and optical microcavities. Opt. Express 2010, 18, 4356–4364. doi: 10.1364/OE.18.004356
- Chan, E.P.; Walish, J.J.; Thomas, E.L.; Stafford, C.M. Block copolymer photonic gel for mechanochromic sensing, Adv. Mater. 2011, 23, 4702–4706. doi: 10.1002/adma.201102662
- Park, T.H.; Yu, S.; Cho, S.H.; Kang, H.S.; Kim, Y.; Kim, M.J.; Eoh, H.; Park, C.; Jeong, B.; Lee, S.W.; et al. Block copolymer structural color strain sensor. NPG Asia Mater. 2018, 10, 328–339. doi: 10.1038/s41427-018-0036-3
- de Castro, L.D.C.; Engels, T.A.P.; Oliveira, O.N., Jr.; Schenning, A.P.H.J. Sticky multicolor mechanochromic labels. ACS Appl. Mater. Interfaces 2024, 16, 11, 14144–14151. doi: 10.1021/acsami.3c19420
- Li, M.; Lyu, Q.; Peng, B.; Chen, X.; Zhang, L.; Zhu, J. Bioinspired colloidal photonic composites: Fabrications and emerging applications. Adv. Mater. 2022, 34, 2110488. doi: 10.1002/adma.202110488
- Fudouzi, H.; Sawada, T.; Photonic rubber sheets with tunable color by elastic deformation. Langmuir 2006, 22, 1365–1368. doi: 10.1021/la0521037
- Arsenault, A.C.; Clark, T.J.; von Freymann, G.; Cademartiri, L.; Sapienza, R.; Bertolotti, J.; Vekris, E.; Wong, S.; Kitaev, V.; Manners, I.; et al. From colour fingerprinting to the control of photoluminescence in elastic photonic crystals. Nat. Mater. 2006, 5, 179–184. doi: 10.1038/nmat1588
- Finlayson, C.E.; Goddard, C.; Papachristodoulou, E.; Snoswell, D.R.E.; Kontogeorgos, A.; Spahn, P.; Hellmann, G.P.; Hess, O.; Baumberg, J.J. Ordering in stretch-tunable polymeric opal fibers. Opt. Express 2011, 19, 3144–3154. doi: 10.1364/OE.19.003144
- Liang, H.L.; Bay, M.M.; Vadrucci, R.; Barty-King, C.H.; Peng, J.; Baumberg, J.J.; De Volder, M. F. L.; Vignolini, S.; Roll-to-roll fabrication of touch-responsive cellulose photonic laminates. Nat. Commun. 2018, 9, 4632. doi: 10.1038/s41467-018-07048-6
- Zhao, Q.; Finlayson, C.; Snoswell, D.; Haines, A.; Schäfer, C.; Spahn, P.; Hellmann, G.P.; Petukhov, A.V.; Herrmann, L.; Burdet, P.; et al. Large-scale ordering of nanoparticles using viscoelastic shear processing. Nat. Commun. 2016, 7, 11661. doi: 10.1038/ncomms11661
- Kamenetzky, E.A.; Magliocco, L.G.; Panzer, H.P.; Structure of solidified colloidal array laser filters studied by cryogenic transmission electron microscopy. Science 1994, 263, 207–210. doi: 10.1126/science.263.5144.207
- Lee, G.H.; Choi, T.M.; Kim, B.; Han, S.H.; Lee, J.M.; Kim, S.-H. Chameleon-inspired mechanochromic photonic films composed of non-close-packed colloidal arrays. ACS Nano 2017, 11, 11350–11357. doi: 10.1021/acsnano.7b05885
- Miwa, E.; Watanabe, K.; Asai, F.; Seki, T.; Urayama, K.; Odent, J.; Raquez, J.M.; Takeoka, Y.; Composite elastomer exhibiting a stress-dependent color change and high toughness prepared by self-assembly of silica particles in a polymer network. ACS Appl. Polym. Mater. 2020, 2, 4078. doi: 10.1021/acsapm.0c00703
- Inci, E.; Topcu, G.; Demir, M.M. Colloidal films of SiO2 in elastomeric polyacrylates by photopolymerization: A strain sensor application. Sens. Actuators B 2020, 305, 127452. doi: 10.1016/j.snb.2019.127452
- Kanai, T.; Sawada, T.; Toyotama, A.; Kitamura, K. Air-pulse-drive fabrication of photonic crystal films of colloids with high spectral quality. Adv. Funct. Mater. 2005, 15, 25–29. doi: 10.1002/adfm.200305160
- Tajima, H.; Amano, A.; Kanai, T. Elastomer-immobilized tunable colloidal photonic crystal films with high optical qualities and high maximum strain. Mater. Adv. 2021, 2, 3294–3299. doi: 10.1039/D1MA00133G
- An, T.; Jiang, X.; Gao, F.; Schäfer, C.; Qiu, J.; Shi, N.; Song, X.; Zhang, M.; Finlayson, C.E.; Zheng, X.; et al. Strain to shine: Stretching-induced three-dimensional symmetries in nanoparticle-assembled photonic crystals. Nat. Commun. 2024, 15, 5215. doi: 10.1038/s41467-024-49535-z
- Miyake, D.; He, J.; Asai, F.; Hara, M.; Seki, T.; Nishimura, S.; Tanaka, M.; Takeoka, Y. Optically Transparent and Color-Stable Elastomer with Structural Coloration under Elongation. Langmuir 2023, 39, 17844–17852. doi: 10.1021/acs.langmuir.3c02442
- Peng, L.; Hou, L.; Wu, P. Synergetic Lithium and Hydrogen Bonds Endow Liquid-Free Photonic Ionic Elastomer with Mechanical Robustness and Electrical/Optical Dual-Output. Adv. Mater. 2023, 35, 2211342. doi: 10.1002/adma.202211342
- Li, X.; Cheng, Y.; Zhou, Y.; Shi, L.; Sun, J.; Ho, G.W.; Wang, R. Programmable Robotic Shape Shifting and Color Morphing Dynamics Through Magneto-Mechano-Chromic Coupling. Adv. Mater. 2024, 36, 2406714. doi: 10.1002/adma.202406714
- Fudouzi, H.; Sawada, T. Colloidal photonic crystals made of soft materials: Gels and elastomers. In Micro and Nanophotonic Technologies, 1st ed.; Meyrueis, P., Van de Voorde, P.M., Sakoda, K., Eds.; Wiley-VCH: Weinheim, Germany, 2017; pp. 507–526. doi: 10.1002/9783527699940.ch22
- Ackerson, B.J.; Pusey, P.N. Shear-induced order in suspensions of hard spheres. Phys. Rev. Lett. 1988, 61, 1033. doi: 10.1103/PhysRevLett.61.1033
- Kawanaka, S.; Uchida, F.; Sawada, T.; Furumi, S.; Fudoji, H. Sheet of Colloidal Crystals Immobilized in Resin, Method for Displaying Structural Color Using Same, Method for Detecting Unevenness Distribution or Hardness Distribution of Subject Using Same, and Structural Color Sheet; International Application Publication: Tokyo, Japan, 2015; 86p.
- Fudouzi, H. Fabricating high-quality opal films with uniform structure over a large area. J. Colloid. Interface Sci. 2004, 275, 277–283. doi: 10.1016/j.jcis.2004.01.054