
Downloads
Download


This work is licensed under a Creative Commons Attribution 4.0 International License.
Structural color is ubiquitous in nature and biological systems, and synthetic structural-color materials have been considered as a more durable substitute for traditional pigments. Recent advancements in the additive manufacturing of exquisite photonic objects have enabled the preparation of structurally colored materials with customized properties. Herein, an up-to-date review about additive manufacturing of bioinspired structural-color materials is presented. This review begins with an overview of the direct ink writing of colloidal crystals, chiral liquid crystals, cellulose nanocrystals, and block copolymers. Then, significant advances in inkjet printing strategy are showcased, including inkjet printing of colloidal crystals and cellulose nanocrystals, inkjet printing inks on photonic polymer coatings, and inkjet printing based on total internal reflections. The third section focuses on the recent advances in other additive manufacturing methods, including digital light processing, two-photon lithography, and fused deposition modeling. This review summarizes a perspective on potential opportunities, challenges, and future prospects encountered by advanced printing technology and functional structural-color materials.
Keywords:
Additive manufacturing structural color direct ink writing inkjet printing colloidal crystals chiral liquid crystalsReferences
- Cai, Z.; Li, Z.; Ravaine, S.; He, M.; Song, Y.; Yin, Y.; Zheng, H.; Teng, J.; Zhang, A. From colloidal particles to photonic crystals: Advances in self-assembly and their emerging applications. Chem. Soc. Rev. 2021, 50, 5898–5951. https://doi.org/10.1039/D0CS00706D.
- Foelen, Y.; Schenning, A.P.H.J. Optical indicators based on structural colored polymers. Adv. Sci. 2022, 9, 2200399. https://doi.org/10.1002/advs.202200399.
- Yang, J.; Zhang, X.; Zhang, X.; Wang, L.; Feng, W.; Li, Q. Beyond the visible: Bioinspired infrared adaptive materials. Adv. Mater. 2021, 33, 2004754. https://doi.org/10.1002/adma.202004754.
- Li, Z.; Fan, Q.; Yin, Y. Colloidal Self-Assembly Approaches to Smart Nanostructured Materials. Chem. Rev. 2022, 122, 4976–5067. https://doi.org/10.1021/acs.chemrev.1c00482.
- Xuan, Z.; Li, J.; Liu, Q.; Yi, F.; Wang, S.; Lu, W. Artificial Structural Colors and Applications. Innovation 2021, 2, 100081. https://doi.org/10.1016/j.xinn.2021.100081.
- Lopez-Garcia, M.; Masters, N.; O’Brien, H.E.; Lennon, J.; Atkinson, G.; Cryan, M.J.; Oulton, R.; Whitney, H.M. Light-induced dynamic structural color by intracellular 3D photonic crystals in brown algae. Sci. Adv. 2018, 4, eaan8917. https://doi.org/10.1126/sciadv.aan8917.
- Whitney, H.M.; Kolle, M.; Andrew, P.; Chittka, L.; Steiner, U.; Glover, B.J. Floral Iridescence, Produced by Diffractive Optics, Acts as a Cue for Animal Pollinators. Science 2009, 323, 130–133. https://doi.org/10.1126/science.1166256.
- Parker, A.R.; Welch, V.L.; Driver, D.; Martini, N. Opal analogue discovered in a weevil. Nature 2003, 426, 786–787. https://doi.org/10.1038/426786a.
- Teyssier, J.; Saenko, S.V.; van der Marel, D.; Milinkovitch, M.C. Photonic crystals cause active colour change in chameleons. Nat. Commun. 2015, 6, 6368. https://doi.org/10.1038/ncomms7368.
- Yoshioka, S.; Fujita, H.; Kinoshita, S.; Matsuhana, B. Alignment of crystal orientations of the multi-domain photonic crystals in Parides sesostris wing scales. J. R. Soc. Interface 2014, 11, 20131029. https://doi.org/10.1098/rsif.2013.1029.
- Saranathan, V.; Osuji, C.O.; Mochrie, S.; Noh, H.; Narayanan, S.; Sandy, A.; Dufresne, E.R.; Prum, R.O. Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales. Proc. Natl. Acad. Sci. USA 2010, 107, 11676–11681. https://doi.org/10.1073/pnas.0909616107.
- Marlow, F.; Sharifi, P.; Brinkmann, R.; Mendive, C. Opals: Status and Prospects. Angew. Chem. Int. Ed. 2009, 48, 6212–6233. https://doi.org/10.1002/anie.200900210.
- Welch, V.; Lousse, V.; Deparis, O.; Parker, A.; Vigneron, J.P. Orange reflection from a three-dimensional photonic crystal in the scales of the weevil Pachyrrhynchus congestus pavonius (Curculionidae). Phys. Rev. E 2007, 75, 041919. https://doi.org/10.1103/PhysRevE.75.041919.
- Sharma, V.; Crne, M.; Park, J.O.; Srinivasarao, M. Structural Origin of Circularly Polarized Iridescence in Jeweled Beetles. Science 2009, 325, 449–451. https://doi.org/10.1126/science.1172051.
- Zhang, X.; Li, L.; Chen, Y.; Valenzuela, C.; Liu, Y.; Yang, Y.; Feng, Y.; Wang, L.; Feng, W. Mechanically Tunable Circularly Polarized Luminescence of Liquid Crystal-Templated Chiral Perovskite Quantum Dots. Angew. Chem. Int. Ed. 2024, 63, e202404202. https://doi.org/10.1002/ange.202404202.
- Lin, X.; Shi, D.; Yi, G.; Yu, D. Structural color-based physical unclonable function. Responsive Mater. 2024, 2, e20230031. https://doi.org/10.1002/rpm.20230031.
- Wang, F.; Lyu, R.; Xu, H.; Gong, R.; Ding, B. Tunable colors from responsive 2D materials. Responsive Mater. 2024, 2, e20240007. https://doi.org/10.1002/rpm.20240007.
- Lyu, Q.; Li, M.; Zhang, L.; Zhu, J. Structurally-colored adhesives for sensitive, high-resolution, and non-invasive adhesion self-monitoring. Nat. Commun. 2024, 15, 8419. https://doi.org/10.1038/s41467-024-52794-5.
- Li, H.; Zhao, G.; Zhu, M.; Guo, J.; Wang, C. Robust Large-Sized Photochromic Photonic Crystal Film for Smart Decoration and Anti-Counterfeiting. ACS Appl. Mater. Interfaces 2022, 14, 14618–14629. https://doi.org/10.1021/acsami.2c01211.
- Fu, F.; Shang, L.; Chen, Z.; Yu, Y.; Zhao, Y. Bioinspired living structural color hydrogels. Sci. Robot. 2018, 3, eaar8580. https://doi.org/10.1126/scirobotics.aar8580.
- Liu, C.; Fan, Z.; Tan, Y.; Fan, F.; Xu, H. Tunable Structural Color Patterns Based on the Visible-Light-Responsive Dynamic Diselenide Metathesis. Adv. Mater. 2020, 32, 1907569. https://doi.org/10.1002/adma.201907569.
- Hong, W.; Yuan, Z.; Chen, X. Structural Color Materials for Optical Anticounterfeiting. Small 2020, 16, 1907626. https://doi.org/10.1002/smll.201907626.
- Kim, I.; Jang, J.; Kim, G.; Lee, J.; Badloe, T.; Mun, J.; Rho, J. Pixelated bifunctional metasurface-driven dynamic vectorial holographic color prints for photonic security platform. Nat. Commun. 2021, 12, 3614. https://doi.org/10.1038/s41467-021-23814-5.
- Zhu, C.; Jin, J.; Wang, Z.; Xu, Z.; Folgueras, M.C.; Jiang, Y.; Uzundal, C.B.; Le, H.K.D.; Wang, F.; Zheng, X.; et al. Supramolecular assembly of blue and green halide perovskites with near-unity photoluminescence. Science 2024, 383, 86–93. https://doi.org/10.1126/science.adi4196.
- Yang, W.; Zheng, C.; Sun, L.; Bie, Z.; Yue, Y.; Li, X.; Sun, W.; Ikeda, T.; Wang, J.; Jiang, L. Spatiotemporal Programmability of 3D Chiral Color Units Driven by Ink Spontaneous Diffusion toward Customized Printing. Adv. Mater. 2024, 36, 2411988. https://doi.org/10.1002/adma.202411988.
- Fang, Y.; Ni, Y.; Leo, S.-Y.; Taylor, C.; Basile, V.; Jiang, P. Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers. Nat. Commun. 2015, 6, 7416. https://doi.org/10.1038/ncomms8416.
- Lee, J.-S.; Je, K.; Kim, S.-H. Designing Multicolored Photonic Micropatterns through the Regioselective Thermal Compression of Inverse Opals. Adv. Funct. Mater. 2016, 26, 4587–4594. https://doi.org/10.1002/adfm.201601095.
- Qin, L.; Gu, W.; Wei, J.; Yu, Y. Piecewise Phototuning of Self-Organized Helical Superstructures. Adv. Mater. 2018, 30, 1704941. https://doi.org/10.1002/adma.201704941.
- Wang, Y.; Aurelio, D.; Li, W.; Tseng, P.; Zheng, Z.; Li, M.; Kaplan, D.L.; Liscidini, M.; Omenetto, F.G. Modulation of Multiscale 3D Lattices through Conformational Control: Painting Silk Inverse Opals with Water and Light. Adv. Mater. 2017, 29, 1702769. https://doi.org/10.1002/adma.201702769.
- Truby, R.L.; Lewis, J.A. Printing soft matter in three dimensions. Nature 2016, 540, 371–378. https://doi.org/10.1038/nature21003.
- del Pozo, M.; Sol, J.A.H.P.; Schenning, A.P.H.J.; Debije, M.G. 4D Printing of Liquid Crystals: What’s Right for Me? Adv. Mater. 2021, 33, 2104390. https://doi.org/10.1002/adma.202104390.
- Zhao, S.; Siqueira, G.; Drdova, S.; Norris, D.; Ubert, C.; Bonnin, A.; Galmarini, S.; Ganobjak, M.; Pan, Z.; Brunner, S.; et al. Additive manufacturing of silica aerogels. Nature 2020, 584, 387–392. https://doi.org/10.1038/s41586-020-2594-0.
- Walker, D.A.; Hedrick, J.L.; Mirkin, C.A. Rapid, large-volume, thermally controlled 3D printing using a mobile liquid interface. Science 2019, 366, 360–364. https://doi.org/10.1126/science.aax1562.
- Wang, L.; Dong, H.; Li, Y.; Liu, R.; Wang, Y.; Bisoyi, H.K.; Sun, L.; Yan, C.; Li, Q. Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer. Adv. Mater. 2015, 27, 2065–2069. https://doi.org/10.1002/adma.201405690.
- Wang, L.; Dong, H.; Li, Y.; Xue, C.; Sun, L.; Yan, C.; Li, Q. Reversible Near-Infrared Light Directed Reflection in a Self-Organized Helical Superstructure Loaded with Upconversion Nanoparticles. J. Am. Chem. Soc. 2014, 136, 4480–4483. https://doi.org/10.1021/ja500933h.
- Zeng, M.; King, D.; Huang, D.; Do, C.; Wang, L.; Chen, M.; Lei, S.; Lin, P.; Chen, Y.; Cheng, Z. Iridescence in nematics: Photonic liquid crystals of nanoplates in absence of long-range periodicity. Proc. Natl. Acad. Sci. USA 2019, 116, 18322–18327. https://doi.org/10.1073/pnas.1906511116.
- Bauer, J.; Crook, C.; Baldacchini, T. A sinterless, low-temperature route to 3D print nanoscale optical-grade glass. Science 2023, 380, 960–966. https://doi.org/10.1126/science.abq3037.
- Kuang, X.; Wu, J.; Chen, K.; Zhao, Z.; Ding, Z.; Hu, F.; Fang, D.; Qi, H.J. Grayscale digital light processing 3D printing for highly functionally graded materials. Sci. Adv. 2019, 5, eaav5790. https://doi.org/10.1126/sciadv.aav5790.
- Hinton, T.J.; Jallerat, Q.; Palchesko, R.N.; Park, J.H.; Grodzicki, M.S.; Shue, H.-J.; Ramadan, M.H.; Hudson, A.R.; Feinberg, A.W. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci. Adv. 2015, 1, e1500758. https://doi.org/10.1126/sciadv.1500758.
- Yuk, H.; Lu, B.; Lin, S.; Qu, K.; Xu, J.; Luo, J.; Zhao, X. 3D printing of conducting polymers. Nat. Commun. 2020, 11, 1604. https://doi.org/10.1038/s41467-020-15316-7.
- Kang, Y.; Zhao, J.; Zeng, Y.; Du, X.; Gu, Z. 3D Printing Photonic Crystals: A Review. Small 2024, 20, 2403525. https://doi.org/10.1002/smll.202403525.
- Li, G.; Leng, M.; Wang, S.; Ke, Y.; Luo, W. Printable structural colors and their emerging applications. Mater. Today 2023, 69, 133–159. https://doi.org/10.1016/j.mattod.2023.08.022.
- Zhao, C.; Wang, J.; Zhang, Z.; Chi, C. Research Progress on the Design of Structural Color Materials Based on 3D Printing. Adv. Mater. Technol. 2023, 8, 2200257. https://doi.org/10.1002/admt.202200257.
- Withnall, R.; Silver, J.; Ireland, T.G.; Zhang, S.; Fern, G.R. Achieving structured colour in inorganic systems: Learning from the natural world. Opt. Laser Technol. 2011, 43, 401–409. https://doi.org/10.1016/j.optlastec.2009.06.016.
- Meng, Z.; Wu, S.; Tang, B.; Ma, W.; Zhang, S. Structurally colored polymer films with narrow stop band, high angle-dependence and good mechanical robustness for trademark anti-counterfeiting. Nanoscale 2018, 10, 14755–14762. https://doi.org/10.1039/C8NR04058C.
- Vignolini, S.; Rudall, P.J.; Rowland, A.V.; Reed, A.; Moyroud, E.; Faden, R.B.; Baumberg, J.J.; Glover, B.J.; Steiner, U. Pointillist structural color in Pollia fruit. Proc. Natl. Acad. Sci. USA 2012, 109, 15712–15715. https://doi.org/10.1073/pnas.1210105109.
- Sharma, V.; Crne, V.; Park, J.O.; Srinivasarao, M. Bouligand Structures Underlie Circularly Polarized Iridescence of Scarab Beetles: A Closer View. Mater. Today Proc. 2014, 1, 161–171. https://doi.org/10.1016/j.matpr.2014.09.019.
- Ma, J.; Yang, Y.; Valenzuela, C.; Zhang, X.; Wang, L.; Feng, W. Mechanochromic, Shape-Programmable and Self-Healable Cholesteric Liquid Crystal Elastomers Enabled by Dynamic Covalent Boronic Ester Bonds. Angew. Chem. Int. Ed. 2022, 61, e202116219. https://doi.org/10.1002/anie.202116219.
- Liu, Y.; Ma, J.; Yang, Y.; Valenzuela, C.; Zhang, X.; Wang, L.; Feng, W. Smart chiral liquid crystal elastomers: Design, properties and application. Smart Mol. 2024, 2, e20230025. https://doi.org/10.1002/smo.20230025.
- Li, X.; Yang, Y.; Valenzuela, C.; Zhang, X.; Xue, P.; Liu, Y.; Liu, C.; Wang, L. Mechanochromic and Conductive Chiral Nematic Nanostructured Film for Bioinspired Ionic Skins. ACS Nano 2023, 17, 12829–12841. https://doi.org/10.1021/acsnano.3c04199.
- Yang, J.; Zhao, W.; He, W.; Yang, Z.; Wang, D.; Cao, H. Liquid crystalline blue phase materials with three-dimensional nanostructures. J. Mater. Chem. C 2019, 7, 13352–13366. https://doi.org/10.1039/C9TC04380B.
- Yang, Y.; Wang, L.; Yang, H.; Li, Q. 3D Chiral Photonic Nanostructures Based on Blue-Phase Liquid Crystals. Small Sci. 2021, 1, 2100007. https://doi.org/10.1002/smsc.202100007.
- Yang, J.; Zhao, W.; Yang, Z.; He, W.; Wang, J.; Ikeda, T.; Jiang, L. Photonic Shape Memory Polymer Based on Liquid Crystalline Blue Phase Films. ACS Appl. Mater. Interfaces 2019, 11, 46124–46131. https://doi.org/10.1021/acsami.9b14202.
- Valenzuela, C.; Ma, S.; Yang, Y.; Chen, Y.; Zhang, X.; Wang, L.; Feng, W. Direct Ink Writing of 3D Chiral Soft Photonic Crystals. Adv. Funct. Mater. 2025, 2421280. https://doi.org/10.1002/adfm.202421280.
- Sun, C.; Zhu, D.; Jia, H.; Yang, C.; Zheng, Z.; Wang, X. Bio-based visual optical pressure-responsive sensor. Carbohydr. Polym. 2021, 260, 117823. https://doi.org/10.1016/j.carbpol.2021.117823.
- Chung, K.; Yu, S.; Heo, C.-J.; Shim, J.W.; Yang, S.-M.; Han, M.G.; Lee, H.-S.; Jin, Y.; Lee, S.Y.; Park, N.; et al. Flexible, Angle-Independent, Structural Color Reflectors Inspired by Morpho Butterfly Wings. Adv. Mater. 2012, 24, 2375–2379. https://doi.org/10.1002/adma.201200521.
- Sveinbjörnsson, B.R.; Weitekamp, R.A.; Miyake, G.M.; Xia, Y.; Atwater, H.A.; Grubbs, R.H. Rapid self-assembly of brush block copolymers to photonic crystals. Proc. Natl. Acad. Sci. USA 2012, 109, 14332–14336. https://doi.org/10.1073/pnas.1213055109.
- Guo, T.; Yu, X.; Zhao, Y.; Yuan, X.; Li, J.; Ren, L. Structure Memory Photonic Crystals Prepared by Hierarchical Self-Assembly of Semicrystalline Bottlebrush Block Copolymers. Macromolecules 2020, 53, 3602–3610. https://doi.org/10.1021/acs.macromol.0c00274.
- Verduzco, R.; Li, X.; Pesek, S.L.; Stein, G.E. Structure, function, self-assembly, and applications of bottlebrush copolymers. Chem. Soc. Rev. 2015, 44, 2405–2420. https://doi.org/10.1039/C4CS00329B.
- Dalsin, S.J.; Rions-Maehren, T.G.; Beam, M.D.; Bates, F.S.; Hillmyer, M.A.; Matsen, M.W. Bottlebrush Block Polymers: Quantitative Theory and Experiments. ACS Nano 2015, 9, 12233–12245. https://doi.org/10.1021/acsnano.5b05473.
- Liu, H.; Wang, H.; Wang, H.; Deng, J.; Ruan, Q.; Zhang, W.; Abdelraouf, O.A.M.; Ang, N.S.S.; Dong, Z.; Yang, J.K.W.; et al. High-Order Photonic Cavity Modes Enabled 3D Structural Colors. ACS Nano 2022, 16, 8244–8252. https://doi.org/10.1021/acsnano.2c01999.
- Yadav, A.; Yadav, N.; Agrawal, V.; Polyutov, S.P.; Tsipotan, A.S.; Karpov, S.V.; Slabko, V.V.; Yadav, V.S.; Wu, Y.; Zheng, H.; et al. State-of-art plasmonic photonic crystals based on self-assembled nanostructures. J. Mater. Chem. C 2021, 9, 3368–3383. https://doi.org/10.1039/D0TC05254J.
- Kim, J.B.; Lee, H.-Y.; Chae, C.; Lee, S.Y.; Kim, S.-H. Advanced Additive Manufacturing of Structurally-Colored Architectures. Adv. Mater. 2024, 36, 2307917. https://doi.org/10.1002/adma.202307917.
- Hou, X.; Li, F.; Song, Y.; Li, M. Recent Progress in Responsive Structural Color. J. Phys. Chem. Lett. 2022, 13, 2885–2900. https://doi.org/10.1021/acs.jpclett.1c04219.
- Xing, Y.; Fei, X.; Ma, J. Ultra-Fast Fabrication of Mechanical-Water-Responsive Color-Changing Photonic Crystals Elastomers and 3D Complex Devices. Small 2024, 20, 2405426. https://doi.org/10.1002/smll.202405426.
- Bellis, I.D.; Martella, D.; Parmeggiani, C.; Wiersma, D.S.; Nocentini, S. Temperature Tunable 4D Polymeric Photonic Crystals. Adv. Funct. Mater. 2023, 33, 2213162. https://doi.org/10.1002/adfm.202213162.
- Wang, H.; Ruan, Q.; Wang, H.; Rezaei, S.D.; Lim, K.T.P.; Liu, H.; Zhang, W.; Trisno, J.; Chan, J.Y.E.; Yang, J.K.W. Full Color and Grayscale Painting with 3D Printed Low-Index Nanopillars. Nano Lett. 2021, 21, 4721–4729. https://doi.org/10.1021/acs.nanolett.1c00979.
- Kim, J.B.; Nam, S.K.; Park, S.; Amstad, E.; Kim, S.-H. Void-Free Photonic Surfaces Created by Adaptive Dense Packing of Emulsion Droplets. Chem. Mater. 2023, 35, 261–270. https://doi.org/10.1021/acs.chemmater.2c03124.
- Zhu, Y.; Tang, T.; Zhao, S.; Joralmon, D.; Poit, Z.; Ahire, B.; Keshav, S.; Raje, A.R.; Blair, J.; Zhang, Z.; et al. Recent advancements and applications in 3D printing of functional optics. Addit. Manuf. 2022, 25, 102682. https://doi.org/10.1016/j.addma.2022.102682.
- Tan, A.T.L.; Beroz, J.; Kolle, M.; Hart, A.J. Direct-Write Freeform Colloidal Assembly. Adv. Mater. 2018, 30, 1803620. https://doi.org/10.1002/adma.201803620.
- Kim, J.B.; Chae, C.; Han, S.H.; Lee, S.Y.; Kim, S.-H. Direct writing of customized structural-color graphics with colloidal photonic inks. Sci. Adv. 2021, 7, eabj8780. https://doi.org/10.1126/sciadv.abj8780.
- Kim, J.H.; Kim, J.B.; Kim, S.-H. Structural Color Inks Containing Photonic Microbeads for Direct Writing. ACS Appl. Mater. Interfaces 2024, 16, 21098–21108. https://doi.org/10.1021/acsami.4c01224.
- Geng, Y.; Kizhakidathazhath, R.; Lagerwall, J.P.F. Robust cholesteric liquid crystal elastomer fibres for mechanochromic textiles. Nat. Mater. 2022, 21, 1441–1447. https://doi.org/10.1038/s41563-022-01355-6.
- Li, X.; Chen, Y.; Du, C.; Liao, X.; Yang, Y.; Feng, W. Direct Ink Writing of Cephalopod Skin-Like Core-Shell Fibers from Cholesteric Liquid Crystal Elastomers and Dyed Solutions. Adv. Funct. Mater. 2024, 34, 2413965. https://doi.org/10.1002/adfm.202413965.
- Bi, R.; Li, X.; Ou, X.; Huang, J.; Huang, D.; Chen, G.; Sheng, Y.; Hong, W.; Wang, Y.; Hu, W.; et al. 3D-Printed Biomimetic Structural Colors. Small 2024, 19, 2306646. https://doi.org/10.1002/smll.202306646.
- Sol, J.A.H.P.; Sentjens, H.; Yang, L.; Grossiord, N.; Schenning, A.P.H.J.; Debije, M.G. Anisotropic Iridescence and Polarization Patterns in a Direct Ink Written Chiral Photonic Polymer. Adv. Mater. 2021, 33, 2103309. https://doi.org/10.1002/adma.202103309.
- Sol, J.A.H.P.; Smits, L.G.; Schenning, A.P.H.J.; Debije, M.G. Direct Ink Writing of 4D Structural Colors. Adv. Funct. Mater. 2022, 32, 2201766. https://doi.org/10.1002/adfm.202201766.
- Choi, J.; Choi, Y.; Lee, J.-H.; Kim, M.C.; Park, S.; Hyun, K.; Lee, K.M.; Yoon, T.-H.; Ahn, S.-k. Direct-Ink-Written Cholesteric Liquid Crystal Elastomer with Programmable Mechanochromic Response. Adv. Funct. Mater. 2024, 33, 2310658. https://doi.org/10.1002/adfm.202310658.
- Chen, Y.; Valenzuela, C.; Liu, Y.; Yang, X.; Yang, Y.; Zhang, X.; Ma, S.; Bi, R.; Wang, L.; Feng, W. Biomimetic artificial neuromuscular fiber bundles with built-in adaptive feedback. Matter 2025, 8, 101904. https://doi.org/10.1016/j.matt.2024.10.022.
- Yang, X.; Valenzuela, C.; Zhang, X.; Chen, Y.; Yang, Y.; Wang, L.; Feng, W. Robust integration of polymerizable perovskite quantum dots with responsive polymers enables 4D-printed self-deployable information display. Matter 2023, 6, 1278–1294. https://doi.org/10.1016/j.matt.2023.02.003.
- Xue, P.; Chen, Y.; Xu, Y.; Valenzuela, C.; Zhang, X.; Bisoyi, H.K.; Yang, X.; Wang, L.; Xu, X.; Li, Q. Bioinspired MXene-Based Soft Actuators Exhibiting Angle-Independent Structural Color. Nano-Micro Letters 2023, 15, 1. https://doi.org/10.1007/s40820-022-00977-4.
- Guan, Z.; Wang, L.; Bae, J. Advances in 4D printing of liquid crystalline elastomers: Materials, techniques, and applications. Mater. Horiz. 2022, 9, 1825–1849. https://doi.org/10.1039/D2MH00232A.
- Ma, S.; Xue, P.; Tang, Y.; Bi, R.; Xu, X.; Wang, L.; Li, Q. Responsive soft actuators with MXene nanomaterials. Responsive Mater. 2024, 2, e20230026. https://doi.org/10.1002/rpm.20230026.
- Lu, W.; Wang, R.; Si, M.; Zhang, Y.; Wu, S.; Zhu, N.; Wang, W.; Chen, T. Synergistic fluorescent hydrogel actuators with selective spatial shape/color-changing behaviors via interfacial supramolecular assembly. SmartMat 2024, 5, e1190. https://doi.org/10.1002/smm2.1190.
- Ma, J.; Yang, Y.; Zhang, X.; Xue, P.; Valenzuela, C.; Liu, Y.; Wang, L.; Feng, W. Mechanochromic and ionic conductive cholesteric liquid crystal elastomers for biomechanical monitoring and human–machine interaction. Mater. Horiz. 2024, 11, 217–226. https://doi.org/10.1039/D3MH01386C.
- Lv, P.; Lu, X.; Wang, L.; Feng, W. Nanocellulose-Based Functional Materials: From Chiral Photonics to Soft Actuator and Energy Storage. Adv. Funct. Mater. 2021, 31, 2104991. https://doi.org/10.1002/adfm.202104991.
- Yang, Y.; Zhang, X.; Valenzuela, C.; Bi, R.; Chen, Y.; Liu, Y.; Zhang, C.; Li, W.; Wang, L.; Feng, W. High-throughput printing of customized structural-color graphics with circularly polarized reflection and mechanochromic response. Matter 2024, 7, 2091–2107. https://doi.org/10.1016/j.matt.2024.03.011.
- Zhang, Z.; Wang, C.; Wang, Q.; Zhao, Y.; Shang, L. Cholesteric cellulose liquid crystal ink for three-dimensional structural coloration. Proc. Natl. Acad. Sci. USA 2022, 119, e2204113119. https://doi.org/10.1073/pnas.2204113119.
- Georgea, K.; Esmaeilia, M.; Wang, J.; Taheri-Qazvini, N.; Abbaspourrad, A.; Sadatia, M. 3D printing of responsive chiral photonic nanostructures. Proc. Natl. Acad. Sci. USA 2023, 120, e2220032120. https://doi.org/10.1073/pnas.2220032120.
- Patel, B.B.; Walsh, D.J.; Kim, D.H.; Kwok, J.; Lee, B.; Guironnet, D.; Diao, Y. Tunable structural color of bottlebrush block copolymers through direct-write 3D printing from solution. Sci. Adv. 2020, 6, eaaz7202. https://doi.org/10.1126/sciadv.aaz7202.
- Jeona, S.; Kamble, Y.L.; Kang, H.; Shi, J.; Wade, M.A.; Patel, B.B.; Pan, T.; Rogers, S.A.; Sing, C.E.; Guironnet, D.; et al. Direct-ink-write cross-linkable bottlebrush block copolymers for on-the-fly control of structural color. Proc. Natl. Acad. Sci. USA 2024, 121, e2313617121. https://doi.org/10.1073/pnas.2313617121.
- Shanker, R.; Sardar, S.; Chen, S.; Gamage, S.; Rossi, S.; Jonsson, M.P. Noniridescent Biomimetic Photonic Microdomes by Inkjet Printing. Nano Lett. 2020, 20, 7243–7250. https://doi.org/10.1021/acs.nanolett.0c02604.
- Hu, Z.; Bradshaw, N.P.; Vanthournout, B.; Forman, C.; Gnanasekaran, K.; Thompson, M.P.; Smeets, P.; Dhinojwala, A.; Shawkey, M.D.; Hersam, M.C.; et al. Non-Iridescent Structural Color Control via Inkjet Printing of Self-Assembled Synthetic Melanin Nanoparticles. Chem. Mater. 2021, 33, 6433–6442. https://doi.org/10.1021/acs.chemmater.1c01719.
- Bai, L.; Xie, Z.; Wang, W.; Yuan, C.; Zhao, Y.; Mu, Z.; Zhong, Q.; Gu, Z. Bio-Inspired Vapor-Responsive Colloidal Photonic Crystal Patterns by Inkjet Printing. ACS Nano 2014, 8, 11094–11100. https://doi.org/10.1021/nn504659p.
- Li, W.; Wang, Y.; Li, M.; Garbarini, L.P.; Omenetto, F.G. Inkjet Printing of Patterned, Multispectral, and Biocompatible Photonic Crystals. Adv. Mater. 2019, 31, 1901036. https://doi.org/10.1002/adma.201901036.
- Moirangthem, M.; Schenning, A.P.H.J. Full Color Camouflage in a Printable Photonic Blue-Colored Polymer. ACS Appl. Mater. Interfaces 2018, 10, 4168–4172. https://doi.org/10.1021/acsami.7b17892.
- Kuang, M.; Wang, L.; Song, Y. Controllable Printing Droplets for High-Resolution Patterns. Adv. Mater. 2014, 26, 6950–6958. https://doi.org/10.1002/adma.201305416.
- Liu, M.; Wang, J.; He, M.; Wang, L.; Li, F.; Jiang, L.; Song, Y. Inkjet Printing Controllable Footprint Lines by Regulating the Dynamic Wettability of Coalescing Ink Droplets. ACS Appl. Mater. Interfaces 2014, 6, 13344–13348. https://doi.org/10.1021/am5042548.
- Wu, L.; Dong, Z.; Kuang, M.; Li, Y.; Li, F.; Jiang, L.; Song, Y. Printing Patterned Fine 3D Structures by Manipulating the Three Phase Contact Line. Adv. Funct. Mater. 2015, 25, 2237–2242. https://doi.org/10.1002/adfm.201404559.
- Kuang, M.; Wang, J.; Bao, B.; Li, F.; Wang, L.; Jiang, L.; Song, Y. Inkjet Printing Patterned Photonic Crystal Domes for Wide Viewing-Angle Displays by Controlling the Sliding Three Phase Contact Line. Adv. Opt. Mater. 2014, 2, 34–38. https://doi.org/10.1002/adom.201300369.
- Li, C.; Yu, Y.; Li, H.; Tian, J.; Guo, W.; Shen, Y.; Cui, H.; Pan, Y.; Song, Y.; Shum, H.C. One-Pot Self-Assembly of Dual-Color Domes Using Mono-Sized Silica Nanoparticles. Nano Lett. 2022, 22, 5236–5243. https://doi.org/10.1021/acs.nanolett.2c01090.
- Li, C.; Yu, Y.; Li, H.; Lin, H.; Cui, H.; Pan, Y.; Zhang, R.; Song, Y.; Shum, H.C. Heterogeneous Self-Assembly of a Single Type of Nanoparticle Modulated by Skin Formation. ACS Nano 2023, 17, 11645–11654. https://doi.org/10.1021/acsnano.3c02082.
- Gao, Y.; Ge, K.; Zhang, Z.; Li, Z.; Hu, S.; Ji, H.; Li, M.; Feng, H. Fine Optimization of Colloidal Photonic Crystal Structural Color for Physically Unclonable Multiplex Encryption and Anti-Counterfeiting. Adv. Sci. 2024, 11, 2305876. https://doi.org/10.1002/advs.202305876.
- Williams, C.A.; Parker, R.M.; Kyriacou, A.; Murace, M.; Vignolini, S. Inkjet Printed Photonic Cellulose Nanocrystal Patterns. Adv. Mater. 2024, 36, 2307563. https://doi.org/10.1002/adma.202307563.
- Moirangthem, M.; Scheers, A.F.; Schenning, A.P.H.J. A full color photonic polymer, rewritable with a liquid crystal ink. Chem. Commun. 2018, 54, 4425–4428. https://doi.org/10.1039/C8CC02188K.
- Liu, X.; Cui, S.; Qin, L.; Yu, Y. Two-Chromatic Printing Creates Skin-Inspired Geminate Patterns Featuring Crosstalk-Free Chemical and Physical Colors. Adv. Opt. Mater. 2024, 12, 2302573. https://doi.org/10.1002/adom.202302573.
- Yang, J.; Zhao, W.; Yang, Z.; He, W.; Wang, J.; Ikeda, T.; Jiang, L. Printable photonic polymer coating based on a monodomain blue phase liquid crystal network. J. Mater. Chem. C 2019, 7, 13764–13769. https://doi.org/10.1039/C9TC05052C.
- Meng, F.; Zheng, C.; Yang, W.; Guan, B.; Wang, J.; Ikeda, T.; Jiang, L. High-Resolution Erasable “Live” Patterns Based on Controllable Ink Diffusion on the 3D Blue-Phase Liquid Crystal Networks. Adv. Funct. Mater. 2022, 32, 2110985. https://doi.org/10.1002/adfm.202110985.
- Yang, Y.; Zhang, X.; Chen, Y.; Yang, X.; Ma, J.; Wang, J.; Wang, L.; Feng, W. Bioinspired Color-Changing Photonic Polymer Coatings Based on Three-Dimensional Blue Phase Liquid Crystal Networks. ACS Appl. Mater. Interfaces 2021, 13, 41102–41111. https://doi.org/10.1021/acsami.1c11711.
- Goodling, A.E.; Nagelberg, S.; Kaehr, B.; Meredith, C.H.; Cheon, S.I.; Saunders, A.P.; Kolle, M.; Zarzar, L.D. Colouration by total internal reflection and interference at microscale concave interfaces. Nature 2019, 566, 523–527. https://doi.org/10.1038/s41586-019-0946-4.
- Wang, L.; Urbas, A.M.; Li, Q. Nature-Inspired Emerging Chiral Liquid Crystal Nanostructures: From Molecular Self-Assembly to DNA Mesophase and Nanocolloids. Adv. Mater. 2020, 32, 1801335. https://doi.org/10.1002/adma.201801335.
- Zhang, X.; Xu, Y.; Valenzuela, C.; Zhang, X.; Wang, L.; Feng, W.; Li, Q. Liquid crystal-templated chiral nanomaterials: From chiral plasmonics to circularly polarized luminescence. Light Sci. Appl. 2022, 11, 223. https://doi.org/10.1038/s41377-022-00913-6.
- Yang, Y.; Liu, Y.; Chen, Y.; Wang, L.; Feng, W. Bioinspired Stretchable Polymers for Dynamic Optical and Thermal Regulation. Adv. Energy Sustain. Res. 2024, 5, 2300289. https://doi.org/10.1002/aesr.202300289.
- Li, K.; Li, T.; Zhang, T.; Li, H.; Li, A.; Li, Z.; Lai, X.; Hou, X.; Wang, Y.; Shi, L.; et al. Facile full-color printing with a single transparent ink. Sci. Adv. 2021, 7, eabh1992. https://doi.org/10.1126/sciadv.abh1992.
- Zhang, Y.; Dong, Z.; Li, C.; Du, H.; Fang, N.X.; Wu, L.; Song, Y. Continuous 3D printing from one single droplet. Nat. Commun. 2020, 11, 4685. https://doi.org/10.1038/s41467-020-18518-1.
- Llorens, J.S.; Barbera, L.; Demirörs, A.F.; Studar, A.R. Light-Based 3D Printing of Complex-Shaped Photonic Colloidal Glasses. Adv. Mater. 2023, 35, 2302868. https://doi.org/10.1002/adma.202302868.
- Liao, J.; Ye, C.; Guo, J.; Garciamendez-Mijares, C.E.; Agrawal, P.; Kuang, X.; Japo, J.O.; Wang, Z.; Mu, X.; Li, W.; et al. 3D-printable colloidal photonic crystals. Mater. Today 2022, 56, 29–41. https://doi.org/10.1016/j.mattod.2022.02.014.
- Zhang, Y.; Zhang, L.; Zhang, C.; Wang, J.; Liu, J.; Ye, C.; Dong, Z.; Wu, L.; Song, Y. Continuous resin refilling and hydrogen bond synergistically assisted 3D structural color printing. Nat. Commun. 2022, 13, 7095. https://doi.org/10.1038/s41467-022-34866-6.
- Zhang, X.; Yang, Y.; Xue, P.; Valenzuela, C.; Chen, Y.; Yang, X.; Wang, L.; Feng, W. Three-Dimensional Electrochromic Soft Photonic Crystals Based on MXene-Integrated Blue Phase Liquid Crystals for Bioinspired Visible and Infrared Camouflage. Angew. Chem. Int. Ed. 2022, 61, e202211030. https://doi.org/10.1002/anie.202211030.
- Yang, H.; Fang, H.; Wang, C.; Wang, Y.; Qi, C.; Zhang, Y.; Zhou, Q.; Huang, M.; Wang, M.; Wu, M. 3D printing of customized functional devices for smart biomedical systems. SmartMat 2024, 5, e1244. https://doi.org/10.1002/smm2.1244.
- Hou, I.C.-Y.; Li, L.; Zhang, H.; Naumov, P. Smart molecular crystal switches. Smart Mol. 2024, 2, e20230031. https://doi.org/10.1002/smo.20230031.
- Qi, Y.; Zhang, S. Recent progress in low-swellable polymer-based smart photonic crystal sensors. Smart Mol. 2023, 1, e20230018. https://doi.org/10.1002/smo.20230018.
- Liu, Y.; Bi, R.; Zhang, X.; Chen, Y.; Valenzuela, C.; Yang, Y.; Liu, H.; Yang, L.; Wang, L.; Feng, W. Cephalopod-Inspired MXene-Integrated Mechanochromic Cholesteric Liquid Crystal Elastomers for Visible-Infrared-Radar Multispectral Camouflage. Angew. Chem. Int. Ed. 2024, 137, e202422636. https://doi.org/10.1002/ange.202422636.
- Wang, H.; Zhang, W.; Ladika, D.; Yu, H.; Gailevičius, D.; Wang, H.; Pan, C.-F.; Nair, P.N.S.; Ke, Y.; Mori, T.; et al. Two-Photon Polymerization Lithography for Optics and Photonics: Fundamentals, Materials, Technologies, and Applications. Adv. Funct. Mater. 2023, 33, 2214211. https://doi.org/10.1002/adfm.202214211.
- Liu, Y.; Wang, H.; Ho, J.; Ng, R.C.; Ng, R.J.H.; Hall-Chen, V.H.; Koay, E.H.H.; Dong, Z.; Liu, H.; Qiu, C.-W.; et al. Structural color three-dimensional printing by shrinking photonic crystals. Nat. Commun. 2019, 10, 4340. https://doi.org/10.1038/s41467-019-12360-w.
- Liu, K.; Ding, H.; Li, S.; Niu, Y.; Zeng, Y.; Zhang, J.; Du, X.; Gu, Z. 3D printing colloidal crystal microstructures via sacrificial-scaffold-mediated two-photon lithography. Nat. Commun. 2022, 13, 4563. https://doi.org/10.1038/s41467-022-32317-w.
- del Pozo, M.; Delaney, C.; Bastiaansen, C.W.M.; Diamond, D.; Schenning, A.P.H.J.; Florea, L. Direct Laser Writing of Four-Dimensional Structural Color Microactuators Using a Photonic Photoresist. ACS Nano 2020, 14, 9832–9839. https://doi.org/10.1021/acsnano.0c02481.
- Cano-Vicent, A.; Tambuwala, M.M.; Hassan, S.S.; Barh, D.; Aljabali, A.A.A.; Birkett, M.; Arjunan, A.; Serrano-Aroca, A. Fused deposition modelling: Current status, methodology, applications and future prospects. Addit. Manuf. 2021, 47, 102378. https://doi.org/10.1016/j.addma.2021.102378.
- Reiner, T.; Carr, N.; Měch, R.; Št’ava, O.; Dachsbacher, C.; Miller, G. Dual-color mixing for fused deposition modeling printers. Com. Gra. For. 2014, 33, 479–486. https://doi.org/10.1111/cgf.12319.
- Korpela, J.; Kokkari, A.; Korhonen, H.; Malin, M.; Närhi, T.; Seppälä, J. Biodegradable and bioactive porous scaffold structures prepared using fused deposition modeling. J Biomed. Mater. Res. Part B 2013, 101B, 610–619. https://doi.org/10.1002/jbm.b.32863.
- Wang, J.; Wang, Z.; Song, Z.; Ren, L.; Liu, Q.; Ren, L. Biomimetic Shape–Color Double-Responsive 4D Printing. Adv. Mater. Technol. 2019, 4, 1900293. https://doi.org/10.1002/admt.201900293.
- Boyle, B.M.; French, T.A.; Pearson, R.M.; McCarthy, B.G.; Miyake, G.M. Structural Color for Additive Manufacturing: 3D-Printed Photonic Crystals from Block Copolymers. ACS Nano 2017, 11, 3052–3058. https://doi.org/10.1021/acsnano.7b00032.
- Zhang, W.; Wang, H.; Wang, H.; Chan, J.Y.E.; Liu, H.; Zhang, B.; Zhang, Y.-F.; Agarwal, K.; Yang, X.; Ranganath, A.S.; et al. Structural multi-colour invisible inks with submicron 4D printing of shape memory polymers. Nat. Commun. 2021, 12, 112. https://doi.org/10.1038/s41467-020-20300-2.
- Rorem, B.A.; Cho, T.H.; Farjam, N.; Lenef, J.D.; Barton, K.; Dasgupta, N.P.; Guo, L.J. Integrating Structural Colors with Additive Manufacturing Using Atomic Layer Deposition. ACS Appl. Mater. Interfaces 2022, 14, 31099–31108. https://doi.org/10.1021/acsami.2c05940.
- Xiao, X.; Chen, Z.-J.; Varley, R.J.; Li, C.-H. Smart bistable coordination complexes. Smart Mol. 2024, 2, e20230028. https://doi.org/10.1002/smo.20230028.
- Demirörs, A.F.; Poloni, E.; Chiesa, M.; Bargardi, F.L.; Binelli, M.R.; Woigk, W.; de Castro, L.D.C.; Kleger, N.; Coulter, F.B.; Sicher, A.; et al. Three-dimensional printing of photonic colloidal glasses into objects with isotropic structural color. Nat. Commun. 2022, 13, 4397. https://doi.org/10.1038/s41467-022-32060-2.
- Zeng, M.; Du, Y.; Jiang, Q.; Kempf, N.; Wei, C.; Bimrose, M.V.; Tanvir, A.N.M.; Xu, H.; Chen, J.; Kirsch, D.J.; et al. High-throughput printing of combinatorial materials from aerosols. Nature 2023, 617, 292–298. https://doi.org/10.1038/s41586-023-05898-9.
- Bai, L.; Mai, V.C.; Lim, Y.; Hou, S.; Möhwald, H.; Duan, H. Large-Scale Noniridescent Structural Color Printing Enabled by Infiltration-Driven Nonequilibrium Colloidal Assembly. Adv. Mater. 2018, 30, 1705667. https://doi.org/10.1002/adma.201705667.
- Jiang, H.; Kaminska, B. Scalable Inkjet-Based Structural Color Printing by Molding Transparent Gratings on Multilayer Nanostructured Surfaces. ACS Nano 2018, 12, 3112–3125. https://doi.org/10.1021/acsnano.7b08580.
- Zhang, X.; Zhou, K.; Zhao, Z.; Lin, Y. Printable Photonic Materials and Devices for Smart Healthcare. Adv. Mater. 2025, 2418729. https://doi.org/10.1002/adma.202418729.
- Chen, H.; Bian, F.; Luo, Z.; Zhao, Y. Biomimetic Anticoagulated Porous Particles with Self-Reporting Structural Colors. Adv. Sci. 2024, 11, 2400189. https://doi.org/10.1002/advs.202400189.
- Middleton, R.; Tunstad, S.A..; Knapp, A.; Winters, S.; McCallum, S.; Whitney, H. Self-assembled, disordered structural color from fruit wax bloom. Sci. Adv. 2024, 10, eadk4219. https://doi.org/10.1126/sciadv.adk4219.
- Kang, X.; Du, Z.; Yang, S.; Liang, M.; Liu, Q.; Qi, J. Smart molecular probes with controllable photophysical property for smart medicine. Smart Mol. 2024, 2, e20240033. https://doi.org/10.1002/smo.20240033.
- Kim, T.; Park, T.H.; Lee, J.W.; Lee, D.; Mun, S.; Kim, G.; Kim, Y.; Kim, G.; Park, J.W.; Lee, K.; et al. Self-Powered Sweat-Responsive Structural Color Display. Adv. Funct. Mater. 2024, 34, 2314721. https://doi.org/10.1002/adfm.202314721.
- Liao, Z.-H.; Wang, F. Light-controlled smart materials: Supramolecular regulation and applications. Smart Mol. 2024, 2, e20240036. https://doi.org/10.1002/smo.20240036.