Downloads
Download


This work is licensed under a Creative Commons Attribution 4.0 International License.
The lipophilic linear FeII triazole complexes [FeII(L)3]Cl2 (L = 1–5) were synthesized using ligands 1–5 containing amide bonds between alkyl chains and 1,2,4-triazole ligands with various spacer methylene length. When the amido and ether linkages are introduced in the alkyl chain moiety, the iron complexes are dissolved in chloroform, [FeII(1)3]Cl2 forms a pale purple jelly-like phase. The purple color is accompanied by a structured absorption around 540 nm, characteristic of iron (II) in the low spin (LS) state. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) of the jelly-like phase confirm the formation of networks of fibrous nano assemblies with widths of 10–30 nm. The observed widths are larger than the molecular lengths of the triazole ligands. The pale purple jelly-like phase turned into a pale-yellow solution by heating above ca 310 K, indicating the formation of high spin (HS) state complexes. The complexes show irreversible spin crossover in the solid state, characterized by SQUID. Interestingly, an abrupt spin crossover is observed in solution reversibly with some thermal hysteresis. UV-vis spectra also showed reversible spin crossover phenomena dependent on the spacer length between the amide group and the Fe(II) triazole complexes. IR spectra of these complexes in chloroform show the formation of hydrogen bonding from amide groups, which enhanced alkyl-chain packing in the coordination polymers. The freeze-dried iron triazole complexes form lamellar structures, which indicates the alkyl chains extending radially from the octahedral triazole complex moiety are oriented in a lamellar packing due to the presence of flexible ether linkages in alkyl chains, which allowed decoupling the alignment of the dodecyloxy alkyl chains from the spacer methylenes connected to the Fe(II) triazole complexes. Introducing amide bondages to the lipophilic one-dimensional coordination systems stabilizes the low-spin state by hydrogen bond networks. It provides hysteresis in the spin crossover in solution, ascribed to the recombination of hydrogen bonds during the temperature change between the heating and cooling sides. Combining hydrogen bonds and lipophilic one-dimensional complexes provides a valuable means to enhance their stability and control physical properties in solution.
Keywords:
Spin crossover Thermal hysteresis Nano metal complex Coordination polymer Self-assemblyReferences
- Gütlich, P.; Goodwin, H.A. Spin Crossover in Transition Metal Compounds I; Springer: Berlin/Heidelberg, Germany, 2004.
- Kahn, O.; Kröber, J.; Jay, C. Spin Transition Molecular Materials for displays and data recording. Adv. Mater. 1992, 4, 718–728.
- Kahn, O.; Martinez, C.J. Spin-Transition Polymers: From Molecular Materials Toward Memory Devices. Science 1998, 279, 44–48.
- Weber, B.; Kaps, E.; Weigand, J.; Carbonera, C.; Letard, J.F.; Achterhold, K.; Parak, F.G. Cooperative Iron(II) spin crossover complexes with N4O2 coordination sphere. Inorg. Chem. 2008, 47, 487–496.
- Bronisz, R. 1,4-Di(1,2,3-triazol-1-yl)butane as building block for the preparation of the iron(II) spin-crossover 2D coordination polymer. Inorg. Chem. 2005, 44, 4463–4465.
- Niel, V.; Martinez-Agudo, J.M.; Munoz, M.C.; Gaspar, A.B.; Real, J.A. Cooperative spin crossover behavior in cyanide-bridged Fe(II)-M(II) bimetallic 3D Hofmann-like networks (M = Ni, Pd, and Pt). Inorg. Chem. 2001, 40, 3838–3839.
- Real, J.A.; Gaspar, A.B.; Niel, V.; Muñoz, M.C. Communication between iron(II) building blocks in cooperative spin transition phenomena. Coord. Chem. Rev. 2003, 236, 121–141.
- Galet, A.; Munoz, M.C.; Gaspar, A.B.; Real, J.A. Architectural isomerism in the three-dimensional polymeric spin crossover system [Fe(pmd)2[Ag(CN)2]2]: Synthesis, structure, magnetic properties, and calorimetric studies. Inorg. Chem. 2005, 44, 8749–8755.
- Munoz, M.C.; Gaspar, A.B.; Galet, A.; Real, J.A. Spin-crossover behavior in cyanide-bridged iron(II)-silver(I) bimetallic 2D Hofmann-like metal-organic frameworks. Inorg. Chem. 2007, 46, 8182–8192.
- Agusti, G.; Gaspar, A.B.; Munoz, M.C.; Real, J.A. Thermal- and pressure-induced cooperative spin transition in the 2D and 3D coordination polymers Fe(5-Br-pmd)z[M(CN)x]y (M=AgI, AuI, NiII, PdII, PtII). Inorg. Chem. 2007, 46, 9646–9654.
- Agusti, G.; Munoz, M.C.; Gaspar, A.B.; Real, J.A. Spin-crossover behavior in cyanide-bridged iron(II)-gold(I) bimetallic 2D Hofmann-like metal-organic frameworks. Inorg. Chem. 2008, 47, 2552–2561.
- Bonhommeau, S.; Molnar, G.; Galet, A.; Zwick, A.; Real, J.A.; McGarvey, J.J.; Bousseksou, A. One shot laser pulse induced reversible spin transition in the spin-crossover complex [Fe(C4H4N2)Pt(CN)4] at room temperature. Angew. Chem. Int. Ed. Engl. 2005, 44, 4069–4073.
- Krober, J.; Codjovi, E.; Kahn, O.; Groliere, F.; Jay, C. A spin transition system with a thermal hysteresis at room temperature. J. Am. Chem. Soc. 1993, 115, 9810–9811.
- Nakamoto, A.; Ono, Y.; Kojima, N.; Matsumura, D.; Yokoyama, T.; Liu, X.J.; Moritomo, Y. Spin transition and its photo-induced effect in spin crossover complex film based on [Fe(II)(trz)3]. Synth. Met. 2003, 137, 1219–1220.
- Nakamoto, A.; Ono, Y.; Kojima, N.; Matsumura, D.; Yokoyama, T. Spin Crossover Complex Film, [FeII(H-trz)3]-Nafion, with a Spin Transition around Room Temperature. Chem. Lett. 2003, 32, 336–337.
- Nakamoto, A.; Kojima, N.; XiaoJun, L.; Moritomo, Y.; Nakamura, A. Demonstration of the thermally induced high spin–low spin transition for a transparent spin crossover complex film [Fe(II)(H-trz)3]-Nafion (trz = triazole). Polyhedron 2005, 24, 2909–2912.
- Lee, S.W.; Lee, J.W.; Jeong, S.H.; Park, I.W.; Kim, Y.M.; Jin, J.I. Processable magnetic plastics composites—Spin crossover of PMMA/Fe(II)-complexes composites. Synth. Met. 2004, 142, 243–249.
- Schwarzenbacher, G.; Gangl, M.S.; Goriup, M.; Winter, M.; Grunert, M.; Renz, F.; Linert, W.; Saf, R. Preparation and Radical Oligomerization of an Fe(II) Complex without Loss of Spin-Crossover Properties. Monatsh. Chem. 2001, 132, 519–529.
- Saf, R.; Schwarzenbacher, G.; Mirtl, C.; Hayn, G.; Hobisch, J.; Gatterer, K. Synthesis of Poly(ethylene oxide)s with 1,2,4-Triazol-4-yl End Groups—Macroligands for Bistable Metal—Polymer Complexes. Macromol. Rapid Commun. 2004, 25, 911–915.
- Enriquez-Cabrera, A.; Rapakousiou, A.; Piedrahita Bello, M.; Molnár, G.; Salmon, L.; Bousseksou, A. Spin crossover polymer composites, polymers and related soft materials. Coord. Chem. Rev. 2020, 419, 213396.
- Coronado, E.; Galán-Mascarós, J.R.; Monrabal-Capilla, M.; García-Martínez, J.; Pardo-Ibáñez, P. Bistable Spin-Crossover Nanoparticles Showing Magnetic Thermal Hysteresis near Room Temperature. Adv. Mater. 2007, 19, 1359–1361.
- Gural’skiy, I.A.; Quintero, C.M.; Molnar, G.; Fritsky, I.O.; Salmon, L.; Bousseksou, A. Synthesis of spin-crossover nano- and micro-objects in homogeneous media. Chem. Eur. J. 2012, 18, 9946–9954.
- Gaspar, A.B.; Ksenofontov, V.; Seredyuk, M.; Gütlich, P. Multifunctionality in spin crossover materials. Coord. Chem. Rev. 2005, 249, 2661–2676.
- Roubeau, O. Triazole-based one-dimensional spin-crossover coordination polymers. Chem. Eur. J. 2012, 18, 15230–15244.
- Gaspar, A.B.; Seredyuk, M. Spin crossover in soft matter. Coord. Chem. Rev. 2014, 268, 41–58.
- Koudriavtsev, A.B.; Linert, W. Thermally Induced Spin Crossover in the Liquid State: The Effects of Non-Ideality. Monatsh. Chem. 2001, 132, 235–243.
- Toftlund, H. Spin Equilibrium in Solutions. Monatsh. Chem. 2001, 132, 1269–1277.
- Turner, J.W.; Schultz, F.A. Intramolecular and Environmental Contributions to Electrode Half-Reaction Entropies of M(tacn)23+/2+ (M = Fe, Co, Ni, Ru; tacn = 1,4,7-Triazacyclononane) Redox Couples. Inorg. Chem. 1998, 38, 358–364.
- Turner, J.W.; Schultz, F.A. Solution characterization of the iron(II) bis(1,4,7-triazacyclononane) spin-equilibrium reaction. Inorg. Chem. 2001, 40, 5296–5298.
- Schenker, S.; Stein, P.C.; Wolny, J.A.; Brady, C.; McGarvey, J.J.; Toftlund, H.; Hauser, A. Biphasic behavior of the high-spin-->low-spin relaxation of [Fe(btpa)](PF6)2 in solution (btpa = N,N,N’,N’-tetrakis(2-pyridylmethyl)-6,6′-bis(aminomethyl)-2,2′- bipyridine). Inorg. Chem. 2001, 40, 134–139.
- Tsubasa, A.; Otsuka, S.; Maekawa, T.; Takano, R.; Sakurai, S.; Deming, T.J.; Kuroiwa, K. Development of hybrid diblock copolypeptide amphiphile/magnetic metal complexes and their spin crossover with lower-critical-solution-temperature(LCST)-type transition. Polymer 2017, 128, 347–355.
- Fujitsuka, M.; Araki, K.; Kodama, T.; Hien, T.T.D.; Sakuragi, M.; Shetty, S.S.; Koyama, Y.; Kuroiwa, K. Supramolecular Control of Spin Equilibrium and Oxidation State in Nanohybrids of Amphiphilic Glycyrrhetinic Acid Derivatives with [Fe(TACN)2]2+. Chem. Lett. 2021, 50, 1142–1145.
- Roubeau, O.; Colin, A.; Schmitt, V.; Clerac, R. Thermoreversible gels as magneto-optical switches. Angew. Chem. Int. Ed. Engl. 2004, 43, 3283–3286.
- Fujigaya, T.; Jiang, D.L.; Aida, T. Spin-crossover physical gels: A quick thermoreversible response assisted by dynamic self-organization. Chem. Asian J. 2007, 2, 106–113.
- Grondin, P.; Roubeau, O.; Castro, M.; Saadaoui, H.; Colin, A.; Clerac, R. Multifunctional gels from polymeric spin-crossover metallo-gelators. Langmuir 2010, 26, 5184–5195.
- Echeverría, C.; Rubio, M.; Mitchell, G.R.; López, D. Structure of a spin-crossover Fe(II)-1,2,4-triazole polymer complex gel in toluene. Small angle neutron scattering and viscoelastic studies. Eur. Polym. J. 2014, 53, 238–245.
- Sánchez-Ferrer, A.; Bräunlich, I.; Ruokolainen, J.; Bauer, M.; Schepper, R.; Smith, P.; Caseri, W.; Mezzenga, R. Gels, xerogels and films of polynuclear iron(ii)–aminotriazole spin-crossover polymeric complexes. RSC Adv. 2014, 4, 60842–60852.
- Gural’skiy, I.A.; Reshetnikov, V.A.; Szebesczyk, A.; Gumienna-Kontecka, E.; Marynin, A.I.; Shylin, S.I.; Ksenofontov, V.; Fritsky, I.O. Chiral spin crossover nanoparticles and gels with switchable circular dichroism. J. Mater. Chem. C 2015, 3, 4737–4741.
- Luo, Y.-H.; Dong, H.; Ma, S.-H.; Zeng, F.-L.; Jin, X.-T.; Liu, M. Atmospheric humidity-triggered reversible spin-state switching. J. Mater. Chem. A 2023, 11, 1232–1238.
- Luo, Y.H.; Jin, X.T.; Zhang, S.X.; Xue, C.; Liu, M. Dynamic Aggregation Triggering Reversible Spin-State Switching. ACS Appl. Mater. Interfaces 2023, 15, 48365–48374.
- Zeng, F.L.; Jin, X.T.; Zhao, J.; Zhang, S.X.; Xue, C.; Luo, Y.H. Construction and screening of spin-crossover-sponge materials based on iron(II)-triazole coordination polymers. Dalton Trans. 2024, 53, 2333–2340.
- Luo, Y.-H.; Xue, C.; Zhang, S.-X.; Zhao, J.; Jin, X.-T.; Liu, M. Charge transfer-triggered reversible spin-state switching. J. Mater. Chem. C 2024, 12, 1693–1700.
- Real, J.A.; Gaspar, A.B.; Munoz, M.C. Thermal, pressure and light switchable spin-crossover materials. Dalton Trans. 2005, 12, 2062–2079.
- Ortega-Villar, N.; Thompson, A.L.; Munoz, M.C.; Ugalde-Saldivar, V.M.; Goeta, A.E.; Moreno-Esparza, R.; Real, J.A. Solid- and solution-state studies of the novel mu-dicyanamide-bridged dinuclear spin-crossover system [(Fe(bztpen)]2[μ-N(CN)2](PF6)3·nH2O. Chem. Eur. J. 2005, 11, 5721–5734.
- Bryliakov, K.P.; Duban, E.A.; Talsi, E.P. The Nature of the Spin-State Variation of [FeII(BPMEN)(CH3CN)2](ClO4)2 in Solution. Eur. J. Inorg. Chem. 2004, 2005, 72–76.
- Kimizuka, N.; Shibata, T. Linear transition metal complexes of lipophilic triazoles and their thermochromism in cast films. Polym. Prepr. Jpn. 2000, 49, 3774.
- Kuroiwa, K.; Shibata, T.; Takada, A.; Nemoto, N.; Kimizuka, N. Heat-set gel-like networks of lipophilic Co(II) triazole complexes in organic media and their thermochromic structural transitions. J. Am. Chem. Soc. 2004, 126, 2016–2021.
- Kuroiwa, K.; Shibata, T.; Sasaki, S.; Ohba, M.; Takahara, A.; Kunitake, T.; Kimizuka, N. Supramolecular control of spin-crossover phenomena in lipophilic Fe(II)-1,2,4-triazole complexes. J. Polym. Sci. Part A Polym. Chem. 2006, 44, 5192–5202.
- Kume, S.; Kuroiwa, K.; Kimizuka, N. Photoresponsive molecular wires of FeII triazole complexes in organic media and light-induced morphological transformations. Chem. Commun. 2006, 23, 2442–2444.
- Kuroiwa, K.; Kimizuka, N. Coordination Structure Changes of Linear Cobalt(II) Triazole Complexes Induced by Binding of Long-chained Alcohols: Adaptive Molecular Clefts. Chem. Lett. 2008, 37, 192–193.
- Matsukizono, H.; Kuroiwa, K.; Kimizuka, N. Self-assembly-directed Spin Conversion of Iron(II) 1,2,4-Triazole Complexes in Solution and Their Effect on Photorelaxation Processes of Fluorescent Counter Ions. Chem. Lett. 2008, 37, 446–447.
- Kuroiwa, K.; Kikuchi, H.; Kimizuka, N. Spin crossover characteristics of nanofibrous Fe(II)-1,2,4-triazole complexes in liquid crystals. Chem. Commun. 2010, 46, 1229–1231.
- Kuroiwa, K.; Kimizuka, N. Self-assembly and functionalization of lipophilic metal-triazole complexes in various media. Polym. J. 2012, 45, 384–390.
- Matsukizono, H.; Kuroiwa, K.; Kimizuka, N. Lipid-packaged linear iron(II) triazole complexes in solution: Controlled spin conversion via solvophobic self-assembly. J. Am. Chem. Soc. 2008, 130, 5622–5623.
- Vos, G.; De Graaff, R.A.G.; Haasnoot, J.G.; Van der Kraan, A.M.; De Vaal, P.; Reedijk, J. Crystal structure at 300 and 105 K, magnetic properties and Moessbauer spectra of bis(triaquatris(4-ethyltriazole-N1)iron(II)-N2,N2′,N2″)iron(II) hexakis(trifluoromethanesulfonate). A linear, trinuclear iron(II) compound, showing a unique high-spin-low-spin transition of the central iron atom. Inorg. Chem. 1984, 23, 2905–2910.
- Kimizuka, N.; Shimizu, M.; Fujikawa, S.; Fujimura, K.; Sano, M.; Kunitake, T. AFM Observation of Organogel Nanostructures on Graphite in the Gel-Assisted Transfer Technique. Chem. Lett. 1998, 27, 967–968.
- Kimizuka, N.; Kawasaki, T.; Kunitake, T. Self-organization of bilayer membranes from amphiphilic networks of complementary hydrogen bonds. J. Am. Chem. Soc. 1993, 115, 4387–4388.
- Kimizuka, N.; Kawasaki, T.; Kunitake, T. Thermal Stability and Specific Dye Binding of a Hydrogen-Bond-Mediated Bilayer Membrane. Chem. Lett. 1994, 23, 33–36.
- Kimizuka, N.; Kawasaki, T.; Kunitake, T. Spectral Characteristics and Molecular Orientation of Azobenzene-Containing Hydrogen-Bond-Mediated Bilayer Membranes. Chem. Lett. 1994, 23, 1399–1402.
- Kimizuka, N.; Kawasaki, T.; Hirata, K.; Kunitake, T. Tube-like Nanostructures Composed of Networks of Complementary Hydrogen Bonds. J. Am. Chem. Soc. 1995, 117, 6360–6361.
- Kimizuka, N.; Kawasaki, T.; Hirata, K.; Kunitake, T. Supramolecular Membranes. Spontaneous Assembly of Aqueous Bilayer Membrane via Formation of Hydrogen Bonded Pairs of Melamine and Cyanuric Acid Derivatives. J. Am. Chem. Soc. 1998, 120, 4094–4104.
- Dolenský, B.; Konvalinka, R.; Jakubek, M.; Král, V. Identification of intramolecular hydrogen bonds as the origin of malfunctioning of multitopic receptors. J. Mol. Struct. 2013, 1035, 124–128.
- Ostaszewski, R.; Urbańczyk-Lipkowska, Z. Solution and solid-state studies on the molecular conformation of mono- and disubstituted pyridine amidoesters: The role of characteristic C-H…O and N-H…O interactions. J. Mol. Struct. 1999, 474, 197–206.
- Armand, F.; Badoux, C.; Bonville, P.; Ruaudel-Teixier, A.; Kahn, O. Langmuir-Blodgett Films of Spin Transition Iron(II) Metalloorganic Polymers. 1. Iron(II) Complexes of Octadecyl-1,2,4-triazole. Langmuir 1995, 11, 3467–3472.
- Roubeau, O.; Alcazar Gomez, J.M.; Balskus, E.; Kolnaar, J.J.A.; Haasnoot, J.G.; Reedijk, J. Spin-transition behaviour in chains of FeII bridged by 4-substituted 1,2,4-triazoles carrying alkyl tails. New J. Chem. 2001, 25, 144–150.
- Kroeber, J.; Audiere, J.-P.; Claude, R.; Codjovi, E.; Kahn, O.; Haasnoot, J.G.; Groliere, F.; Jay, C.; Bousseksou, A. Spin Transitions and Thermal Hysteresis in the Molecular-Based Materials [Fe(Htrz)2(trz)](BF4) and [Fe(Htrz)3](BF4)2·H2O (Htrz = 1,2,4-4H-triazole; trz = 1,2,4-triazolato). Chem. Mater. 1995, 6, 1404–1412.
- Fujigaya, T.; Jiang, D.L.; Aida, T. Switching of spin states triggered by a phase transition: Spin-crossover properties of self-assembled iron(II) complexes with alkyl-tethered triazole ligands. J. Am. Chem. Soc. 2003, 125, 14690–14691.
- Fujigaya, T.; Jiang, D.L.; Aida, T. Spin-crossover dendrimers: Generation number-dependent cooperativity for thermal spin transition. J. Am. Chem. Soc. 2005, 127, 5484–5489.