Downloads

Ngo, T., Yu, S., & Yang, H. Modelling the Growth and Aggregation of Gold Nanoparticles Using Liquid-Phase Transmission Electron Microscopy. Materials and Interfaces. 2025, 2(2), 201–212. doi: https://doi.org/10.53941/mi.2025.100016

The ability to synthesize nanoparticles of desired shape, size and composition relies heavily on our understanding on how to finely control various factors influencing the formation, such as the kinetics of growth. Fundamental study on the nucleation and growth of nanoparticles found itself at the forefront with the application of liquid-phase transmission electron microscopy (LTEM) in the investigation of dynamic growth and assembly processes. Since early study using LTEM to observe and quantify the nucleation and growth of single colloidal platinum nanoparticles, several theoretical models have been developed. More complex mode of formation was also revealed based on a hybrid growth process of gold on platinum icosahedral nanoparticles to form core-shell structures. These studies have been carried out by focusing on single or a small number of nanoparticles. Herewith, we present a study on the establishment of an analytical method to quantify the particle formation using in situ LTEM technique. This approach is based on the analysis of median particle size and focused on main events accounted for the formation of nanoparticles at a given time. We found that unlike the cases for single particle analysis, the observed formation rate could not be explained by any single formation mode, such as diffusion- and/or reaction-controlled growth described by the Liftshitz-Slyosov-Wagner theory or formation through coalescence as described by the Smoluchowski aggregative kinetics. A global fit was used to describe the entire formation of nanoparticles in an ensemble.

References

  1. Lu, J.; Wu, W.; Colombari, F.M.; Jawaid, A.; Seymour, B.; Whisnant, K.; Zhong, X.; Choi, W.; Chalmpes, N.; Lahann, J.; et al. Nano-Achiral Complex Composites for Extreme Polarization Optics. Nature 2024, 630, 860–865. doi: 10.1038/s41586-024-07455-4
  2. Boles, M.A.; Ling, D.; Hyeon, T.; Talapin, D.V. The Surface Science of Nanocrystals. Nat. Mater. 2016, 15, 141–153. doi: 10.1038/nmat4526
  3. Yang, X.; Yang, M.; Pang, B.; Vara, M.; Xia, Y. Gold Nanomaterials at Work in Biomedicine. Chem. Rev. 2015, 115, 10410–10488. doi: 10.1021/acs.chemrev.5b00193
  4. Murphy, C.J.; Vartanian, A.M.; Geiger, F.M.; Hamers, R.J.; Pedersen, J.; Cui, Q.; Haynes, C.L.; Carlson, E.E.; Hernandez, R.; Klaper, R.D.; et al. Biological Responses to Engineered Nanomaterials: Needs for the Next Decade. ACS Cent. Sci. 2015, 1, 117–123. doi: 10.1021/acscentsci.5b00182
  5. Wu, J.; Yang, H. Platinum-Based Oxygen Reduction Electrocatalysts. Acc. Chem. Res. 2013, 46, 1848–1857. doi: 10.1021/ar300359w
  6. Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. One-Dimensional Nanostructures: Synthesis, Characterization, and Applications. Adv. Mater. 2003, 15, 353–389. doi: 10.1002/adma.200390087
  7. Zhou, L.; Huang, Q.; Xia, Y. Plasmon-Induced Hot Electrons in Nanostructured Materials: Generation, Collection, and Application to Photochemistry. Chem. Rev. 2024, 124, 8597–8619. doi: 10.1021/acs.chemrev.4c00165
  8. Yu, S.; Yang, H. Design Principles for the Synthesis of Platinum–Cobalt Intermetallic Nanoparticles for Electrocatalytic Applications. Chem. Commun. 2023, 59, 4852–4871. doi: 10.1039/D3CC00590A
  9. Peng, Z.; You, H.; Yang, H. Composition-Dependent Formation of Platinum Silver Nanowires. ACS Nano 2010, 4, 1501–1510. doi: 10.1021/nn9016795
  10. Park, J.; Joo, J.; Kwon, S.G.; Jang, Y.; Hyeon, T. Synthesis of Monodisperse Spherical Nanocrystals. Angew. Chem., Int. Ed. 2007, 46, 4630–4660. doi: 10.1002/anie.200603148
  11. Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S.E. Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics? Angew. Chem. Int. Ed. 2009, 48, 60–103. doi: 10.1002/anie.200802248
  12. Yin, X.; Shi, M.; Wu, J.; Pan, Y.-T.; Gray, D.L.; Bertke, J.A.; Yang, H. Quantitative Analysis of Different Formation Modes of Pt Nanocrystals Controlled by Ligand Chemistry. Nano Lett. 2017, 17, 6146–6150. doi: 10.1021/acs.nanolett.7b02751
  13. Yu, S.; Zhang, C.; Yang, H. Two-Dimensional Metal Nanostructures: From Theoretical Understanding to Experiment. Chem. Rev. 2023, 123, 3443–3492. doi: 10.1021/acs.chemrev.2c00469
  14. Drake, G.A.; Keating, L.P.; Shim, M. Design Principles of Colloidal Nanorod Heterostructures. Chem. Rev. 2023, 123, 3761–3789. doi: 10.1021/acs.chemrev.2c00410
  15. Grogan, J.M.; Rotkina, L.; Bau, H.H. In-Situ Liquid-Cell Electron Microscopy of Colloid Aggregation and Growth Dynamics. Phys. Rev. E 2011, 83, 061405. doi: 10.1103/PhysRevE.83.061405
  16. Liao, H.G.; Cui, L.; Whitelam, S.; Zheng, H. Real-Time Imaging of Pt3Fe Nanorod Growth in Solution. Science 2012, 336, 1011–1014. doi: 10.1126/science.1219185
  17. Wu, J.; Gao, W.; Yang, H.; Zuo, J.-M. Dissolution Kinetics of Oxidative Etching of Cubic and Icosahedral Platinum Nanoparticles Revealed by in situ Liquid Transmission Electron Microscope. ACS Nano 2017, 11, 1696–1703. doi: 10.1021/acsnano.6b07541
  18. Lyu, Z.; Yao, L.; Chen, W.; Kalutantirige, F.C.; Chen, Q. Electron Microscopy Studies of Soft Nanomaterials. Chem. Rev. 2023, 123, 4051–4145. doi: 10.1021/acs.chemrev.2c00461
  19. Kim, B.H.; Yang, J.; Lee, D.; Choi, B.K.; Hyeon, T.; Park, J. Liquid-Phase Transmission Electron Microscopy for Studying Colloidal Inorganic Nanoparticles. Adv. Mater. 2018, 30, 1703316. doi: 10.1002/adma.201703316
  20. Kim, B.H.; Heo, J.; Kim, S.; Reboul, C.F.; Chun, H.; Kang, D.; Bae, H.; Hyun, H.; Lim, J.; Lee, H.; et al. Critical Differences in 3D Atomic Structure of Individual Ligand-Protected Nanocrystals in Solution. Science 2020, 368, 60–67. doi: 10.1126/science.aax3233
  21. Ngo, T.; Yang, H. Toward Ending the Guessing Game: Study of the Formation of Nanostructures Using In Situ Liquid Transmission Electron Microscopy. J. Phys. Chem. Lett. 2015, 6, 5051–5061. doi: 10.1021/acs.jpclett.5b02210
  22. Hodnik, N.; Dehm, G.; Mayrhofer, K.J.J. Importance and Challenges of Electrochemical in Situ Liquid Cell Electron Microscopy for Energy Conversion Research. Acc. Chem. Res. 2016, 49, 2015–2022. doi: 10.1021/acs.accounts.6b00330
  23. Ross, F.M. Opportunities and Challenges in Liquid Cell Electron Microscopy. Science 2015, 350, aaa9886. doi: 10.1126/science.aaa9886
  24. Peng, X.; Shangguan, J.; Zhang, Q.; Hauwiller, M.; Yu, H.; Nie, Y.; Bustillo, K.C.; Alivisatos, A.P.; Asta, M.; Zheng, H. Unveiling Corrosion Pathways of Sn Nanocrystals through High-Resolution Liquid Cell Electron Microscopy. Nano Lett. 2024, 24, 1168–1175. doi: 10.1021/acs.nanolett.3c03913
  25. Zheng, H.; Smith, R.K.; Jun, Y.W.; Kisielowski, C.; Dahmen, U.; Alivisatos, A.P. Observation of Single Colloidal Platinum Nanocrystal Growth Trajectories. Science 2009, 324, 1309–1312. doi: 10.1126/science.1172104
  26. Zhang, Q.; Peng, X.; Nie, Y.; Zheng, Q.; Shangguan, J.; Zhu, C.; Bustillo, K.C.; Ercius, P.; Wang, L.; Limmer, D.T.; et al. Defect-Mediated Ripening of Core-Shell Nanostructures. Nat. Commun. 2022, 13, 2211. doi: 10.1038/s41467-022-29847-8
  27. Zheng, L.; Zhang, X.; Bustillo, K.C.; Yao, Y.; Zhao, L.; Zhu, M.; Li, W.; Zheng, H. Growth Mechanism of Core–Shell PtNi–Ni Nanoparticles Using in Situ Transmission Electron Microscopy. Nanoscale 2018, 10, 11281–11286. doi: 10.1039/C8NR01625A
  28. Wu, J.; Gao, W.; Wen, J.; Miller, D.J.; Lu, P.; Zuo, J.-M.; Yang, H. Growth of Au on Pt Icosahedral Nanoparticles Revealed by Low-Dose In Situ TEM. Nano Lett. 2015, 15, 2711–2715. doi: 10.1021/acs.nanolett.5b00414
  29. Zheng, L.; Zhao, L.; Zhao, S.; Zhang, X.; Bustillo, K.C.; Yao, Y.; Yi, X.; Zhu, M.; Li, W.; Zheng, H. A Unique Pathway of PtNi Nanoparticle Formation Observed with Liquid Cell Transmission Electron Microscopy. Nanoscale 2020, 12, 1414–1418. doi: 10.1039/C9NR08352A
  30. Li, D.; Nielsen, M.H.; Lee, J.R.I.; Frandsen, C.; Banfield, J.F.; De Yoreo, J.J. Direction-Specific Interactions Control Crystal Growth by Oriented Attachment. Science 2012, 336, 1014–1018. doi: 10.1126/science.1219643
  31. Welch, D.A.; Woehl, T.J.; Park, C.; Faller, R.; Evans, J.E.; Browning, N.D. Understanding the Role of Solvation Forces on the Preferential Attachment of Nanoparticles in Liquid. ACS Nano 2015, 10, 181–187. doi: 10.1021/acsnano.5b06632
  32. Wang, Y.; Peng, X.; Abelson, A.; Zhang, B.-K.; Qian, C.; Ercius, P.; Wang, L.-W.; Law, M.; Zheng, H. In Situ TEM Observation of Neck Formation During Oriented Attachment of PbSe Nanocrystals. Nano Res. 2019, 12, 2549–2553. doi: 10.1007/s12274-019-2483-8
  33. Zhu, C.; Liang, S.; Song, E.; Zhou, Y.; Wang, W.; Shan, F.; Shi, Y.; Hao, C.; Yin, K.; Zhang, T.; et al. In-Situ Liquid Cell Transmission Electron Microscopy Investigation on Oriented Attachment of Gold Nanoparticles. Nat. Commun. 2018, 9, 421. doi: 10.1038/s41467-018-02925-6
  34. Luo, B.; Smith, J.W.; Ou, Z.; Chen, Q. Quantifying the Self-Assembly Behavior of Anisotropic Nanoparticles Using Liquid-Phase Transmission Electron Microscopy. Acc. Chem. Res. 2017, 50, 1125–1133. doi: 10.1021/acs.accounts.7b00048
  35. Kim, A.; Akkunuri, K.; Qian, C.; Yao, L.; Sun, K.; Chen, Z.; Vo, T.; Chen, Q. Direct Imaging of “Patch-Clasping” and Relaxation in Robust and Flexible Nanoparticle Assemblies. ACS Nano 2024, 18, 939–950. doi: 10.1021/acsnano.3c09710
  36. Park, J.; Zheng, H.; Lee, W.C.; Geissler, P.L.; Rabani, E.; Alivisatos, A.P. Direct Observation of Nanoparticle Superlattice Formation by Using Liquid Cell Transmission Electron Microscopy. ACS Nano 2012, 6, 2078–2085. doi: 10.1021/nn203837m
  37. Ou, Z.; Yao, L.; An, H.; Shen, B.; Chen, Q. Imaging How Thermal Capillary Waves and Anisotropic Interfacial Stiffness Shape Nanoparticle Supracrystals. Nat. Commun. 2020, 11, 4555. doi: 10.1038/s41467-020-18363-2
  38. Chen, Q.; Yuk, J.M.; Hauwiller, M.R.; Park, J.; Dae, K.S.; Kim, J.S.; Alivisatos, A.P. Nucleation, Growth, and Superlattice Formation of Nanocrystals Observed in Liquid Cell Transmission Electron Microscopy. MRS Bull. 2020, 45, 713–726. doi: 10.1557/mrs.2020.229
  39. Son, Y.; Kim, B.H.; Choi, B.K.; Luo, Z.; Kim, J.; Kim, G.-H.; Park, S.-J.; Hyeon, T.; Mehraeen, S.; Park, J. In Situ Liquid Phase TEM of Nanoparticle Formation and Diffusion in a Phase-Separated Medium. ACS Appl. Mater. Interfaces 2022, 14, 22810–22817. doi: 10.1021/acsami.1c20824
  40. Hong, J.; Bae, J.-H.; Jo, H.; Park, H.-Y.; Lee, S.; Hong, S.J.; Chun, H.; Cho, M.K.; Kim, J.; Kim, J.; et al. Metastable Hexagonal Close-Packed Palladium Hydride in Liquid Cell TEM. Nature 2022, 603, 631–636. doi: 10.1038/s41586-021-04391-5
  41. Crook, M.F.; Laube, C.; Moreno-Hernandez, I.A.; Kahnt, A.; Zahn, S.; Ondry, J.C.; Liu, A.; Alivisatos, A.P. Elucidating the Role of Halides and Iron during Radiolysis-Driven Oxidative Etching of Gold Nanocrystals Using Liquid Cell Transmission Electron Microscopy and Pulse Radiolysis. J. Am. Chem. Soc. 2021, 143, 11703–11713. doi: 10.1021/jacs.1c05099
  42. Hauwiller, M.R.; Ye, X.; Jones, M.R.; Chan, C.M.; Calvin, J.J.; Crook, M.F.; Zheng, H.; Alivisatos, A.P. Tracking the Effects of Ligands on Oxidative Etching of Gold Nanorods in Graphene Liquid Cell Electron Microscopy. ACS Nano 2020, 14, 10239–10250. doi: 10.1021/acsnano.0c03601
  43. Woehl, T.J.; Park, C.; Evans, J.E.; Arslan, I.; Ristenpart, W.D.; Browning, N.D. Direct Observation of Aggregative Nanoparticle Growth: Kinetic Modeling of the Size Distribution and Growth Rate. Nano Lett. 2014, 14, 373–378. doi: 10.1021/nl4043328
  44. Qin, F.; Wang, Z.; Wang, Z.L. Anomalous Growth and Coalescence Dynamics of Hybrid Perovskite Nanoparticles Observed by Liquid-Cell Transmission Electron Microscopy. ACS Nano 2016, 10, 9787–9793. doi: 10.1021/acsnano.6b04234
  45. Talapin, D.V.; Rogach, A.L.; Haase, M.; Weller, H. Evolution of an Ensemble of Nanoparticles in a Colloidal Solution: Theoretical Study. J. Mater. Chem. B 2001, 105, 12278–12285. doi: 10.1021/jp012229m
  46. Kang, S.; Kim, J.-H.; Lee, M.; Yu, J.W.; Kim, J.; Kang, D.; Baek, H.; Bae, Y.; Kim, B.H.; Kang, S.; et al. Real-Space Imaging of Nanoparticle Transport and Interaction Dynamics by Graphene Liquid Cell TEM. Sci. Adv. 2021, 7, eabi5419. doi: 10.1126/sciadv.abi5419
  47. Kim, J.; Kang, D.; Kang, S.; Kim, B.H.; Park, J. Coalescence Dynamics of Platinum Group Metal Nanoparticles Revealed by Liquid-Phase Transmission Electron Microscopy. iScience 2022, 25, 104699. doi: 10.1016/j.isci.2022.104699
  48. Ma, X.; Lin, F.; Chen, X.; Jin, C. Unveiling Growth Pathways of Multiply Twinned Gold Nanoparticles by In Situ Liquid Cell Transmission Electron Microscopy. ACS Nano 2020, 14, 9594–9604. doi: 10.1021/acsnano.9b10173
  49. Ma, X.; Lin, F.; Chen, X.; Jin, C. Synergy between Structure Characteristics and the Solution Chemistry in a Near/Non-Equilibrium Oxidative Etching of Penta-Twinned Palladium Nanorods. J. Phys. Chem. C 2021, 125, 4010–4020. doi: 10.1021/acs.jpcc.0c11200
  50. Zhang, Y.; Keller, D.; Rossell, M.D.; Erni, R. Formation of Au Nanoparticles in Liquid Cell Transmission Electron Microscopy: From a Systematic Study to Engineered Nanostructures. Chem. Mater. 2017, 29, 10518–10525. doi: 10.1021/acs.chemmater.7b04421
  51. Choi, B.K.; Kim, J.; Luo, Z.; Kim, J.; Kim, J.H.; Hyeon, T.; Mehraeen, S.; Park, S.; Park, J. Shape Transformation Mechanism of Gold Nanoplates. ACS Nano 2023, 17, 2007–2018. doi: 10.1021/acsnano.2c07256
  52. Schneider, N.M.; Norton, M.M.; Mendel, B.J.; Grogan, J.M.; Ross, F.M.; Bau, H.H. Electron–Water Interactions and Implications for Liquid Cell Electron Microscopy. J. Phys. Chem. C 2014, 118, 22373–22382. doi: 10.1021/jp507400n
  53. Woehl, T.J.; Moser, T.; Evans, J.E.; Ross, F.M. Electron-Beam-Driven Chemical Processes During Liquid Phase Transmission Electron Microscopy. MRS Bull. 2020, 45, 746–753. doi: 10.1557/mrs.2020.227
  54. Lifshitz, I.M.; Slyozov, V.V. The Kinetics of Precipitation from Supersaturated Solid Solutions. J. Phys. Chem. Solids 1961, 19, 35–50. doi: 10.1016/0022-3697(61)90054-3
  55. Viswanatha, R.; Sapra, S.; Satpati, B.; Satyam, P.V.; Dev, B.N.; Sarma, D.D. Understanding the Quantum Size Effects in ZnO Nanocrystals. J. Mater. Chem. 2004, 14, 661–668. doi: 10.1039/b310404d
  56. Sholl, D.S.; Skodje, R.T. Late-Stage Coarsening of Adlayers by Dynamic Cluster Coalescence. Phys. A 1996, 231, 631–647. doi: 10.1016/0378-4371(96)00112-4
  57. Meakin, P. Diffusion-Limited Droplet Coalescence. Phys. A 1990, 165, 1–18. doi: 10.1016/0378-4371(90)90238-N
  58. Viswanatha, R.; Sarma, D. D. Growth of Nanocrystals in Solution. In Nanomaterials Chemistry: Recent Developments and New Directions; Rao, C.N.R., Müller, A., Cheetham, A.K., Eds.; Verlag GmbH & Co. KGaA: Weinheim, Germany, 2007; pp. 139–170. doi: 10.1002/9783527611362.ch4