Downloads

York, S., Mansley, Z. R., Wang, F., Zhu, Y., & Chen, J. Carbon Monoxide-Assisted Synthesis of Nickel Cobalt Phosphide Nanorods for the Hydrogen Evolution Reaction. Materials and Interfaces. 2025, 2(2), 226–238. doi: https://doi.org/10.53941/mi.2025.100018

The development of efficient and cost-effective catalysts for hydrogen evolution reaction (HER) is crucial for the advancement of electrochemical water splitting technology. Here, we report a novel synthetic method for the preparation of single-crystalline NiCoP nanorods with tunable aspect ratios using a CO-assisted, trioctylphosphine (TOP)-mediated approach. The introduction of CO gas at different temperatures allows for the control of the nanorod growth, resulting in various aspect ratios while maintaining a hexagonal crystal structure and a composition of 1:1 Ni/Co as NiCoP. Our results demonstrate that the NiCoP nanorods with higher aspect ratios exhibit improved HER activity and stability, with the highest aspect ratio nanorods showing the lowest overpotential and Tafel slope in both acidic and alkaline media. This study highlights the importance of controlling the size and morphology of bimetallic phosphide nanoparticles to optimize their catalytic activity for HER, providing new insights into the design and optimization of nanostructured catalysts for electrochemical water splitting applications.

References

  1. Shi, Y.; Zhang, B. Recent Advances in Transition Metal Phosphide Nanomaterials: Synthesis and Applications in Hydrogen Evolution Reaction. Chem. Soc. Rev. 2016, 45, 1529–1541. doi: 10.1039/C5CS00434A
  2. Pei, Y.; Cheng, Y.; Chen, J.; Smith, W.; Dong, P.; Ajayan, P.M.; Ye, M.; Shen, J. Recent Developments of Transition Metal Phosphides as Catalysts in the Energy Conversion Field. J. Mater. Chem. A 2018, 6, 23220–23243. doi: 10.1039/C8TA09454C
  3. Wu, W.; Luo, S.; Huang, Y.; He, H.; Shen, P.K.; Zhu, J. Recent Advances in Transition Metal Phosphide-Based Heterostructure Electrocatalysts for the Oxygen Evolution Reaction. Mater. Chem. Front. 2024, 8, 1064–1083. doi: 10.1039/D3QM00793F
  4. Li, Y.; Xin, T.; Cao, Z.; Zheng, W.; He, P.; Yoon Suk Lee, L. Optimized Transition Metal Phosphides for Direct Seawater Electrolysis: Current Trends. ChemSusChem 2024, 17, e202301926. doi: 10.1002/cssc.202301926
  5. Ray, A.; Sultana, S.; Paramanik, L.; Parida, K.M. Recent Advances in Phase, Size, and Morphology-Oriented Nanostructured Nickel Phosphide for Overall Water Splitting. J. Mater. Chem. A 2020, 8, 19196–19245. doi: 10.1039/D0TA05797E
  6. Lu, X.; Yan, K.; Yu, Z.; Wang, J.; Liu, R.; Zhang, R.; Qiao, Y.; Xiong, J. Transition Metal Phosphides: Synthesis Nanoarchitectonics, Catalytic Properties, and Biomass Conversion Applications. ChemSusChem 2024, 17, e202301687. doi: 10.1002/cssc.202301687
  7. Sun, M.; Liu, H.; Qu, J.; Li, J. Earth-Rich Transition Metal Phosphide for Energy Conversion and Storage. Adv. Energy Mater. 2016, 6, 1600087. doi: 10.1002/aenm.201600087
  8. Li, G.; Feng, Y.; Yang, Y.; Wu, X.; Song, X.; Tan, L. Recent Advances in Transition Metal Phosphide Materials: Synthesis and Applications in Supercapacitors. Nano Mater. Sci. 2024, 6, 174–192. doi: 10.1016/j.nanoms.2023.03.003
  9. Popczun, E.J.; McKone, J.R.; Read, C.G.; Biacchi, A.J.; Wiltrout, A.M.; Lewis, N.S.; Schaak, R.E. Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2013, 135, 9267–9270. doi: 10.1021/ja403440e
  10. Hansen, M.H.; Stern, L.-A.; Feng, L.; Rossmeisl, J.; Hu, X. Widely Available Active Sites on Ni2p for Electrochemical Hydrogen Evolution—Insights from First Principles Calculations. Phys. Chem. Chem. Phys. 2015, 17, 10823–10829. doi: 10.1039/C5CP01065A
  11. Chung, Y.-H.; Gupta, K.; Jang, J.-H.; Park, H.S.; Jang, I.; Jang, J.H.; Lee, Y.-K.; Lee, S.-C.; Yoo, S.J. Rationalization of Electrocatalysis of Nickel Phosphide Nanowires for Efficient Hydrogen Production. Nano Energy 2016, 26, 496–503. doi: 10.1016/j.nanoen.2016.06.002
  12. Xiao, J.; Lv, Q.; Zhang, Y.; Zhang, Z.; Wang, S. One-Step Synthesis of Nickel Phosphide Nanowire Array Supported on Nickel Foam with Enhanced Electrocatalytic Water Splitting Performance. RSC Adv. 2016, 6, 107859–107864. doi: 10.1039/C6RA20737E
  13. Wang, Y.; Liu, L.; Zhang, X.; Yan, F.; Zhu, C.; Chen, Y. Self-Supported Tripod-Like Nickel Phosphide Nanowire Arrays for Hydrogen Evolution. J. Mater. Chem. A 2019, 7, 22412–22419. doi: 10.1039/C9TA07859B
  14. Kibsgaard, J.; Tsai, C.; Chan, K.; Benck, J.D.; Nørskov, J.K.; Abild-Pedersen, F.; Jaramillo, T.F. Designing an Improved Transition Metal Phosphide Catalyst for Hydrogen Evolution Using Experimental and Theoretical Trends. Energy Environ. Sci. 2015, 8, 3022–3029. doi: 10.1039/C5EE02179K
  15. Downes, C.A.; Van Allsburg, K.M.; Tacey, S.A.; Unocic, K.A.; Baddour, F.G.; Ruddy, D.A.; LiBretto, N.J.; O’Connor, M.M.; Farberow, C.A.; Schaidle, J.A.; et al. Controlled Synthesis of Transition Metal Phosphide Nanoparticles to Establish Composition-Dependent Trends in Electrocatalytic Activity. Chem. Mater. 2022, 34, 6255–6267. doi: 10.1021/acs.chemmater.2c00085
  16. Liu, J.; Wang, Z.; David, J.; Llorca, J.; Li, J.; Yu, X.; Shavel, A.; Arbiol, J.; Meyns, M.; Cabot, A. Colloidal Ni2-Xcoxp Nanocrystals for the Hydrogen Evolution Reaction. J. Mater. Chem. A 2018, 6, 11453–11462. doi: 10.1039/C8TA03485K
  17. Qian, C.; Kim, F.; Ma, L.; Tsui, F.; Yang, P.; Liu, J. Solution-Phase Synthesis of Single-Crystalline Iron Phosphide Nanorods/Nanowires. J. Am. Chem. Soc. 2004, 126, 1195–1198. doi: 10.1021/ja038401c
  18. Park, J.; Koo, B.; Yoon, K.Y.; Hwang, Y.; Kang, M.; Park, J.-G.; Hyeon, T. Generalized Synthesis of Metal Phosphide Nanorods Via Thermal Decomposition of Continuously Delivered Metal-Phosphine Complexes Using a Syringe Pump. J. Am. Chem. Soc. 2005, 127, 8433–8440. doi: 10.1021/ja0427496
  19. Brock, S.L.; Senevirathne, K. Recent Developments in Synthetic Approaches to Transition Metal Phosphide Nanoparticles for Magnetic and Catalytic Applications. J. Solid State Chem. 2008, 181, 1552–1559. doi: 10.1016/j.jssc.2008.03.012
  20. Zhang, Y.; Li, N.; Zhang, Z.; Li, S.; Cui, M.; Ma, L.; Zhou, H.; Su, D.; Zhang, S. Programmable Synthesis of Multimetallic Phosphide Nanorods Mediated by Core/Shell Structure Formation and Conversion. J. Am. Chem. Soc. 2020, 142, 8490–8497. doi: 10.1021/jacs.0c02584
  21. Thompson, D.; Hoffman, A.S.; Mansley, Z.R.; York, S.; Wang, F.; Zhu, Y.; Bare, S.R.; Chen, J. Synthesis of Amorphous and Various Phase-Pure Nanoparticles of Nickel Phosphide with Uniform Sizes via a Trioctylphosphine-Mediated Pathway. Inorg. Chem. 2024, 63, 18981–18991. doi: 10.1021/acs.inorgchem.4c03334
  22. DeRight, R.E. The Decomposition of Formic Acid by Sulfuric Acid. J. Am. Chem. Soc. 1933, 55, 4761–4764. doi: 10.1021/ja01339a005
  23. Crystallography Open Database: Information Card for Entry 1008056. Available online: https://www.crystallogra phy.net/cod/1008056.html (access on 11 April 2025).
  24. Sénateur, J.; Rouault, A.; L’Héritier, P.; Krumbügel-Nylund, M.A.; Fruchart, R.; Fruchart, D.; Convert, P.; Roudaut, E. La Selectivite Des Substitutions Dans Les Phases Mm’p Etude De L’ordre Par Diffraction Neutronique Dans Nicop. Mater. Res. Bull. 1973, 8, 229–238. doi: 10.1016/0025-5408(73)90176-1
  25. American Mineralogist Crystal Structure Database: Conip. Available online: https://rruff.geo.arizona.edu/AMS/res ult.php?key=_database_code_amcsd+0015998&viewing=html (access on 11 April 2025).
  26. Chen, Y.; She, H.; Luo, X.; Yue, G.-H.; Peng, D.-L. Solution-Phase Synthesis of Nickel Phosphide Single-Crystalline Nanowires. J. Cryst. Growth 2009, 311, 1229–1233. doi: 10.1016/j.jcrysgro.2008.11.094
  27. She, H.; Chen, Y.; Luo, X.; Yue, G.-H.; Peng, D.-L. Preparation of Anisotropic Transition Metal Phosphide Nanocrystals: The Case of Nickel Phosphide Nanoplatelets, Nanorods, and Nanowires. J. Nanosci. Nanotechnol. 2010, 10, 5175–5182. doi: 10.1166/jnn.2010.2212
  28. Wu, J.; Gross, A.; Yang, H. Shape and Composition-Controlled Platinum Alloy Nanocrystals Using Carbon Monoxide as Reducing Agent. Nano Lett. 2011, 11, 798–802. doi: 10.1021/nl104094p
  29. You, H.; Yang, S.; Ding, B.; Yang, H. Synthesis of Colloidal Metal and Metal Alloy Nanoparticles for Electrochemical Energy Applications. Chem. Soc. Rev. 2013, 42, 2880–2904. doi: 10.1039/C2CS35319A
  30. Zhao, G.; Rui, K.; Dou, S.X.; Sun, W. Heterostructures for Electrochemical Hydrogen Evolution Reaction: A Review. Adv. Funct. Mater. 2018, 28, 1803291. doi: 10.1002/adfm.201803291
  31. Lasia, A. Mechanism and Kinetics ofthe Hydrogen Evolution Reaction. Int. J. Hydrog. Energy 2019, 44, 19484–19518. doi: 10.1016/j.ijhydene.2019.05.183
  32. Strmcnik, D.; Lopes, P.P.; Genorio, B.; Stamenkovic, V.R.; Markovic, N.M. Design Principles for Hydrogen Evolution Reaction Catalyst Materials. Nano Energy 2016, 29, 29–36. doi: 10.1016/j.nanoen.2016.04.017
  33. Shinagawa, T.; Garcia-Esparza, A.T.; Takanabe, K. Insight on Tafel Slopes from a Microkinetic Analysis of Aqueous Electrocatalysis for Energy Conversion. Sci. Rep. 2015, 5, 13801. doi: 10.1038/srep13801
  34. Trasatti, S.; Petrii, O. Real Surface Area Measurements in Electrochemistry. J. Electroanal. Chem. 1992, 327, 353–376. doi: 10.1016/0022-0728(92)80162-W
  35. Morales, D.M.; Risch, M. Seven Steps to Reliable Cyclic Voltammetry Measurements for the Determination of Double Layer Capacitance. J. Phys. Energy 2021, 3, 034013. doi: 10.1088/2515-7655/abee33
  36. McCrory, C.C.L.; Jung, S.; Ferrer, I.M.; Chatman, S.M.; Peters, J.C.; Jaramillo, T.F. Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices. J. Am. Chem. Soc. 2015, 137, 4347–4357. doi: 10.1021/ja510442p
  37. Manso, R.H.; Hong, J.; Wang, W.; Acharya, P.; Hoffman, A.S.; Tong, X.; Wang, F.; Greenlee, L.F.; Zhu, Y.; Bare, S.R.; et al. Revealing Structural Evolution of Nickel Phosphide-Iron Oxide Core–Shell Nanocatalysts in Alkaline Medium for the Oxygen Evolution Reaction. Chem. Mater. 2024, 36, 6440–6453. doi: 10.1021/acs.chemmater.4c00379
  38. Zhang, Y.; Gao, L.; Hensen, E.J.M.; Hofmann, J.P. Evaluating the Stability of Co2P Electrocatalysts in the Hydrogen Evolution Reaction for Both Acidic and Alkaline Electrolytes. ACS Energy Lett. 2018, 3, 1360–1365. doi: 10.1021/acsenergylett.8b00514
  39. Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. The ORCA Quantum Chemistry Program Package. J. Chem. Phys. 2020, 152, 224108. doi: 10.1063/5.0004608
  40. Becke, A.D. ANew Mixing of Hartree-Fock and Local Density-Functional Theories. J. Chem. Phys. 1993, 98, 1372–1377. doi: 10.1063/1.464304
  41. Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. doi: 10.1039/b508541a
  42. Helmich-Paris, B.; de Souza, B.; Neese, F.; Izsák, R. An Improved Chain of Spheres for Exchange Algorithm. J. Chem. Phys. 2021, 155, 104109. doi: 10.1063/5.0058766