Downloads
Download


This work is licensed under a Creative Commons Attribution 4.0 International License.
Despite remarkable progress, colloidal synthesis of metal nanocrystal is still far away from reaching the goal for robust, reproducible, and scalable production. Even with the adoption of seed-mediated growth, the synthesis can still be complicated by issues such as self-nucleation, galvanic replacement, stochastic symmetry reduction, and unwanted compositional variation. All these issues can be addressed by switching to steady-state synthesis characterized by a slow, constant, and tightly controlled reduction rate. Steady-state synthesis can be achieved by adding one reactant dropwise while using the other reactant in large excess, but this method is not suitable for scale-up production in a continuous flow reactor. There is a pressing need to develop alternative methods capable of establishing the steady-state kinetics characteristic of dropwise addition while introducing both reactants by one-shot injection. In this Perspective, we discuss a number of methods that allow for both one-shot injection and steady-state synthesis.
References
- Sun, S.; Murray, C.B.; Weller, D.; Folks, L.; Moser, A. Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices. Science 2000, 287, 1989–1992. doi: 10.1126/science.287.5460.1989
- Jin, R.; Cao, Y.; Mirkin, C.A.; Kelly, K.L.; Schatz, G.C.; Zheng, J.G. Photoinduced Conversion of Silver Nanospheres to Nanoprisms. Science 2001, 294, 1901–1903. doi: 10.1126/science.1066541
- Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S.E. Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics? Angew. Chem. Int. Ed. 2009, 48, 60–103. doi: 10.1002/anie.200802248
- Nguyen, Q.N.; Wang, C.; Shang, Y.; Janssen, A.; Xia, Y. Colloidal Synthesis of Metal Nanocrystals: From Asymmetrical Growth to Symmetry Breaking. Chem. Rev. 2023, 123, 3693–3760. doi: 10.1021/acs.chemrev.2c00468
- Quan, Z.; Wang, Y.; Fang, J. High-Index Faceted Noble Metal Nanocrystals. Acc. Chem. Res. 2013, 46, 191–202. doi: 10.1021/ar200293n
- Sherry, L.J.; Chang, S.-H.; Schatz, G.C.; Van Duyne, R.P.; Wiley, B.J.; Xia, Y. Localized Surface Plasmon Resonance Spectroscopy of Single Silver Nanocubes. Nano Lett. 2005, 5, 2034–2038. doi: 10.1021/nl0515753
- Bratlie, K.M.; Lee, H.; Komvopoulos, K.; Yang, P.; Somorjai, G.A. Platinum Nanoparticle Shape Effects on Benzene Hydrogenation Selectivity. Nano Lett. 2007, 7, 3097–3101. doi: 10.1021/nl0716000
- Guo, S.; Zhang, S.; Sun, S. Tuning Nanoparticle Catalysis for the Oxygen Reduction Reaction. Angew. Chem. Int. Ed. 2013, 52, 8526–8544. doi: 10.1002/anie.201207186
- Shi, Y.; Lyu, Z.; Zhao, M.; Chen, R.; Nguyen, Q.N.; Xia, Y. Noble-Metal Nanocrystals with Controlled Shapes for Catalytic and Electrocatalytic Applications. Chem. Rev. 2021, 121, 649–735. doi: 10.1021/acs.chemrev.0c00454
- Rathmell, A.R.; Bergin, S.M.; Hua, Y.; Li, Z.; Wiley, B.J. The Growth Mechanism of Copper Nanowires and Their Properties in Flexible, Transparent Conducting Films. Adv. Mater. 2010, 22, 3558–3563. doi: 10.1002/adma.201000775
- Li, M.; Zhao, Z.; Cheng, T.; Fortunelli, A.; Chen, C.-Y.; Yu, R.; Zhang, Q.; Gu, L.; Merinov, B.V.; Lin, Z.; et al. Ultrafine Jagged Platinum Nanowires Enable Ultrahigh Mass Activity for the Oxygen Reduction Reaction. Science 2016, 354, 1414–1419. doi: 10.1126/science.aaf9050
- Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M.A. Chemistry and Properties of Nanocrystals of Different Shapes. Chem. Rev. 2005, 105, 1025–1102. doi: 10.1021/cr030063a
- Jones, M.R.; Osberg, K.D.; Macfarlane, R.J.; Langille, M.R.; Mirkin, C.A. Templated Techniques for the Synthesis and Assembly of Plasmonic Nanostructures. Chem. Rev. 2011, 111, 3736–3827. doi: 10.1021/cr1004452
- Wang, Y.; Black, K.C.L.; Luehmann, H.; Li, W.; Zhang, Y.; Cai, X.; Wan, D.; Liu, S.-Y.; Li, M.; Kim, P.; et al. Comparison Study of Gold Nanohexapods, Nanorods, and Nanocages for Photothermal Cancer Treatment. ACS Nano 2013, 7, 2068–2077. doi: 10.1021/nn304332s
- Linic, S.; Christopher, P.; Ingram, D.B. Plasmonic-Metal Nanostructures for Efficient Conversion of Solar to Chemical Energy. Nat. Mater. 2011, 10, 911–921. doi: 10.1038/nmat3151
- Lee, I.; Delbecq, F.; Morales, R.; Albiter, M.A.; Zaera, F. Tuning Selectivity in Catalysis by Controlling Particle Shape. Nat. Mater. 2009, 8, 132–138. doi: 10.1038/nmat2371
- Reske, R.; Mistry, H.; Behafarid, F.; Roldan Cuenya, B.; Strasser, P. Particle Size Effects in the Catalytic Electroreduction of CO2 on Cu Nanoparticles. J. Am. Chem. Soc. 2014, 136, 6978–6986. doi: 10.1021/ja500328k
- Singh, A.R.; Rohr, B.A.; Schwalbe, J.A.; Cargnello, M.; Chan, K.; Jaramillo, T.F.; Chorkendorff, I.; Nørskov, J.K. Electrochemical Ammonia Synthesis—The Selectivity Challenge. ACS Catal. 2017, 7, 706–709. doi: 10.1021/acscatal.6b03035
- Kang, Y.; Li, M.; Cai, Y.; Cargnello, M.; Diaz, R.E.; Gordon, T.R.; Wieder, N.L.; Adzic, R.R.; Gorte, R.J.; Stach, E.A.; et al. Heterogeneous Catalysts Need Not Be so “Heterogeneous”: Monodisperse Pt Nanocrystals by Combining Shape-Controlled Synthesis and Purification by Colloidal Recrystallization. J. Am. Chem. Soc. 2013, 135, 2741–2747. doi: 10.1021/ja3116839
- Kline, T.R.; Paxton, W.F.; Mallouk, T.E.; Sen, A. Catalytic Nanomotors: Remote-Controlled Autonomous Movement of Striped Metallic Nanorods. Angew. Chem. Int. Ed. 2005, 44, 744–746. doi: 10.1002/anie.200461890
- Choi, S.-I.; Xie, S.; Shao, M.; Odell, J.H.; Lu, N.; Peng, H.-C.; Protsailo, L.; Guerrero, S.; Park, J.; Xia, X.; et al. Synthesis and Characterization of 9 nm Pt–Ni Octahedra with a Record High Activity of 3.3 A/mgPt for the Oxygen Reduction Reaction. Nano Lett. 2013, 13, 3420–3425. doi: 10.1021/nl401881z
- Zhang, J.; Yang, H.; Fang, J.; Zou, S. Synthesis and Oxygen Reduction Activity of Shape-Controlled Pt3Ni Nanopolyhedra. Nano Lett. 2010, 10, 638–644. doi: 10.1021/nl903717z
- Xie, M.; Shen, M.; Chen, R.; Xia, Y. Development of Highly-Active Catalysts toward Oxygen Reduction by Controlling the Shape and Composition of Pt–Ni Nanocrystals. ACS Appl. Mater. Interfaces 2023, 15, 49146–49153. doi: 10.1021/acsami.3c10514
- Xia, Y.; Gilroy, K.D.; Peng, H.-C.; Xia, X. Seed-Mediated Growth of Colloidal Metal Nanocrystals. Angew. Chem. Int. Ed. 2017, 56, 60–95. doi: 10.1002/anie.201604731
- Zhang, H.; Li, W.; Jin, M.; Zeng, J.; Yu, T.; Yang, D.; Xia, Y. Controlling the Morphology of Rhodium Nanocrystals by Manipulating the Growth Kinetics with a Syringe Pump. Nano Lett. 2011, 11, 898–903. doi: 10.1021/nl104347j
- Peng, H.-C.; Park, J.; Zhang, L.; Xia, Y. Toward a Quantitative Understanding of Symmetry Reduction Involved in the Seed-Mediated Growth of Pd Nanocrystals. J. Am. Chem. Soc. 2015, 137, 6643–6652. doi: 10.1021/jacs.5b03040
- Wang, C.; Huang, Z.; Ding, Y.; Xie, M.; Chi, M.; Xia, Y. Facet-Controlled Synthesis of Platinum-Group-Metal Quaternary Alloys: The Case of Nanocubes and {100} Facets. J. Am. Chem. Soc. 2023, 145, 2553–2560. doi: 10.1021/jacs.2c12368
- Wang, C.; He, J.; Xia, Y. Controlling the Composition and Elemental Distribution of Bi- and Multi-Metallic Nanocrystals via Dropwise Addition. Nat. Synth. 2024, 3, 1076–1082. doi: 10.1038/s44160-024-00600-x
- Niu, G.; Ruditskiy, A.; Vara, M.; Xia, Y. Toward Continuous and Scalable Production of Colloidal Nanocrystals by Switching from Batch to Droplet Reactors. Chem. Soc. Rev. 2015, 44, 5806–5820. doi: 10.1039/C5CS00049A
- Zhou, M.; Wang, H.; Vara, M.; Hood, Z.D.; Luo, M.; Yang, T.-H.; Bao, S.; Chi, M.; Xiao, P.; Zhang, Y.; et al. Quantitative Analysis of the Reduction Kinetics Responsible for the One-Pot Synthesis of Pd–Pt Bimetallic Nanocrystals with Different Structures. J. Am. Chem. Soc. 2016, 138, 12263–12270. doi: 10.1021/jacs.6b07213
- Luty-Błocho, M.; Pacławski, K.; Wojnicki, M.; Fitzner, K. The Kinetics of Redox Reaction of Gold(III) Chloride Complex Ions with L-Ascorbic Acid. Inorg. Chim. Acta 2013, 395, 189–196. doi: 10.1016/j.ica.2012.10.031
- Corbett, J.F. Pseudo First-Order Kinetics. J. Chem. Educ. 1972, 49, 663. doi: 10.1021/ed049p663
- Yang, T.-H.; Gilroy, K.D.; Xia, Y. Reduction Rate as a Quantitative Knob for Achieving Deterministic Synthesis of Colloidal Metal Nanocrystals. Chem. Sci. 2017, 8, 6730–6749. doi: 10.1039/C7SC02833D
- Smith, J.H.; Luo, Q.; Millheim, S.L.; Millstone, J.E. Decoupling Intrinsic Metal Ion Reduction Rates from Structural Outcomes in Multimetallic Nanoparticles. J. Am. Chem. Soc. 2024, 146, 34822–34832. doi: 10.1021/jacs.4c13826
- Rodrigues, T.S.; Zhao, M.; Yang, T.-H.; Gilroy, K.D.; da Silva, A.G.M.; Camargo, P.H.C.; Xia, Y. Synthesis of Colloidal Metal Nanocrystals: A Comprehensive Review on the Reductants. Chem. Eur. J. 2018, 24, 16944–16963. doi: 10.1002/chem.201802194
- Zhang, H.; Lu, Y.; Liu, H.; Fang, J. Controllable Synthesis of Three-Dimensional Branched Gold Nanocrystals Assisted by Cationic Surfactant Poly(Diallyldimethylammonium) Chloride in Acidic Aqueous Solution. RSC Adv. 2014, 4, 36757–36764. doi: 10.1039/C4RA07535H
- Lee, H.; Habas, S.E.; Somorjai, G.A.; Yang, P. Localized Pd Overgrowth on Cubic Pt Nanocrystals for Enhanced Electrocatalytic Oxidation of Formic Acid. J. Am. Chem. Soc. 2008, 130, 5406–5407. doi: 10.1021/ja800656y
- Wilkins, P.C.; Johnson, M.D.; Holder, A.A.; Crans, D.C. Reduction of Vanadium(V) by L-Ascorbic Acid at Low and Neutral pH: Kinetic, Mechanistic, and Spectroscopic Characterization. Inorg. Chem. 2006, 45, 1471–1479. doi: 10.1021/ic050749g
- Yu, H.; He, J.; Li, K.K.; Huang, Q.; Ding, Y.; Xia, Y. Synthesis of Ag@Pd Nanocubes and Pd-Based Nanoframes via One-Shot Injection of a Halide-Free Precursor for Continuous Production in a Flow Reactor. Chem. Eur. J. 2025, 31, e202500201. doi: 10.1002/chem.202500201
- Fiévet, F.; Ammar-Merah, S.; Brayner, R.; Chau, F.; Giraud, M.; Mammeri, F.; Peron, J.; Piquemal, J.-Y.; Sicard, L.; Viau, G. The Polyol Process: A Unique Method for Easy Access to Metal Nanoparticles with Tailored Sizes, Shapes and Compositions. Chem. Soc. Rev. 2018, 47, 5187–5233. doi: 10.1039/C7CS00777A
- Sun, Y.; Xia, Y. Shape-Controlled Synthesis of gold and silver nanoparticles. Science 2002, 298, 2176–2179. doi: 10.1126/science.1077229
- Zhang, D.; Chen, Y.; Huang, Y.-S.; Huang, Q.; Kwan Li, K.; Xia, Y. Robust, Reproducible, and Scalable Synthesis of Silver Nanocubes. Chem. Eur. J. 2024, 30, e202400833. doi: 10.1002/chem.202400833
- Wiley, B.J.; Xiong, Y.; Li, Z.-Y.; Yin, Y.; Xia, Y. Right Bipyramids of Silver: A New Shape Derived from Single Twinned Seeds. Nano Lett. 2006, 6, 765–768. doi: 10.1021/nl060069q
- Wiley, B.J.; Sun, Y.; Xia, Y. Synthesis of Silver Nanostructures with Controlled Shapes and Properties. Acc. Chem. Res. 2007, 40, 1067–1076. doi: 10.1021/ar7000974
- Skrabalak, S.E.; Wiley, B.J.; Kim, M.; Formo, E.V.; Xia, Y. On the Polyol Synthesis of Silver Nanostructures: Glycolaldehyde as a Reducing Agent. Nano Lett. 2008, 8, 2077–2081. doi: 10.1021/nl800910d
- Sun, Y.; Gates, B.; Mayers, B.; Xia, Y. Crystalline Silver Nanowires by Soft Solution Processing. Nano Lett. 2002, 2, 165–168. doi: 10.1021/nl010093y
- Sun, Y.; Mayers, B.; Herricks, T.; Xia, Y. Polyol Synthesis of Uniform Silver Nanowires: A Plausible Growth Mechanism and the Supporting Evidence. Nano Lett. 2003, 3, 955–960. doi: 10.1021/nl034312m
- Korte, K.E.; Skrabalak, S.E.; Xia, Y. Rapid Synthesis of Silver Nanowires through a CuCl- or CuCl2-Mediated Polyol Process. J. Mater. Chem. 2008, 18, 437–441. doi: 10.1039/B714072J
- Chan, J.M.; Zhang, L.; Yuet, K.P.; Liao, G.; Rhee, J.-W.; Langer, R.; Farokhzad, O.C. PLGA–Lecithin–PEG Core–Shell Nanoparticles for Controlled Drug Delivery. Biomaterials 2009, 30, 1627–1634. doi: 10.1016/j.biomaterials.2008.12.013
- Fredenberg, S.; Wahlgren, M.; Reslow, M.; Axelsson, A. The Mechanisms of Drug Release in Poly(Lactic-Co-Glycolic Acid)-Based Drug Delivery Systems—A Review. Int. J. Pharm. 2011, 415, 34–52. doi: 10.1016/j.ijpharm.2011.05.049