Downloads

He, J., Yu, H., & Xia, Y. Steady-State Synthesis of Colloidal Metal Nanocrystals. Materials and Interfaces. 2025, 2(2), 213–225. doi: https://doi.org/10.53941/mi.2025.100017

Despite remarkable progress, colloidal synthesis of metal nanocrystal is still far away from reaching the goal for robust, reproducible, and scalable production. Even with the adoption of seed-mediated growth, the synthesis can still be complicated by issues such as self-nucleation, galvanic replacement, stochastic symmetry reduction, and unwanted compositional variation. All these issues can be addressed by switching to steady-state synthesis characterized by a slow, constant, and tightly controlled reduction rate. Steady-state synthesis can be achieved by adding one reactant dropwise while using the other reactant in large excess, but this method is not suitable for scale-up production in a continuous flow reactor. There is a pressing need to develop alternative methods capable of establishing the steady-state kinetics characteristic of dropwise addition while introducing both reactants by one-shot injection. In this Perspective, we discuss a number of methods that allow for both one-shot injection and steady-state synthesis.

References

  1. Sun, S.; Murray, C.B.; Weller, D.; Folks, L.; Moser, A. Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices. Science 2000, 287, 1989–1992. doi: 10.1126/science.287.5460.1989
  2. Jin, R.; Cao, Y.; Mirkin, C.A.; Kelly, K.L.; Schatz, G.C.; Zheng, J.G. Photoinduced Conversion of Silver Nanospheres to Nanoprisms. Science 2001, 294, 1901–1903. doi: 10.1126/science.1066541
  3. Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S.E. Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics? Angew. Chem. Int. Ed. 2009, 48, 60–103. doi: 10.1002/anie.200802248
  4. Nguyen, Q.N.; Wang, C.; Shang, Y.; Janssen, A.; Xia, Y. Colloidal Synthesis of Metal Nanocrystals: From Asymmetrical Growth to Symmetry Breaking. Chem. Rev. 2023, 123, 3693–3760. doi: 10.1021/acs.chemrev.2c00468
  5. Quan, Z.; Wang, Y.; Fang, J. High-Index Faceted Noble Metal Nanocrystals. Acc. Chem. Res. 2013, 46, 191–202. doi: 10.1021/ar200293n
  6. Sherry, L.J.; Chang, S.-H.; Schatz, G.C.; Van Duyne, R.P.; Wiley, B.J.; Xia, Y. Localized Surface Plasmon Resonance Spectroscopy of Single Silver Nanocubes. Nano Lett. 2005, 5, 2034–2038. doi: 10.1021/nl0515753
  7. Bratlie, K.M.; Lee, H.; Komvopoulos, K.; Yang, P.; Somorjai, G.A. Platinum Nanoparticle Shape Effects on Benzene Hydrogenation Selectivity. Nano Lett. 2007, 7, 3097–3101. doi: 10.1021/nl0716000
  8. Guo, S.; Zhang, S.; Sun, S. Tuning Nanoparticle Catalysis for the Oxygen Reduction Reaction. Angew. Chem. Int. Ed. 2013, 52, 8526–8544. doi: 10.1002/anie.201207186
  9. Shi, Y.; Lyu, Z.; Zhao, M.; Chen, R.; Nguyen, Q.N.; Xia, Y. Noble-Metal Nanocrystals with Controlled Shapes for Catalytic and Electrocatalytic Applications. Chem. Rev. 2021, 121, 649–735. doi: 10.1021/acs.chemrev.0c00454
  10. Rathmell, A.R.; Bergin, S.M.; Hua, Y.; Li, Z.; Wiley, B.J. The Growth Mechanism of Copper Nanowires and Their Properties in Flexible, Transparent Conducting Films. Adv. Mater. 2010, 22, 3558–3563. doi: 10.1002/adma.201000775
  11. Li, M.; Zhao, Z.; Cheng, T.; Fortunelli, A.; Chen, C.-Y.; Yu, R.; Zhang, Q.; Gu, L.; Merinov, B.V.; Lin, Z.; et al. Ultrafine Jagged Platinum Nanowires Enable Ultrahigh Mass Activity for the Oxygen Reduction Reaction. Science 2016, 354, 1414–1419. doi: 10.1126/science.aaf9050
  12. Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M.A. Chemistry and Properties of Nanocrystals of Different Shapes. Chem. Rev. 2005, 105, 1025–1102. doi: 10.1021/cr030063a
  13. Jones, M.R.; Osberg, K.D.; Macfarlane, R.J.; Langille, M.R.; Mirkin, C.A. Templated Techniques for the Synthesis and Assembly of Plasmonic Nanostructures. Chem. Rev. 2011, 111, 3736–3827. doi: 10.1021/cr1004452
  14. Wang, Y.; Black, K.C.L.; Luehmann, H.; Li, W.; Zhang, Y.; Cai, X.; Wan, D.; Liu, S.-Y.; Li, M.; Kim, P.; et al. Comparison Study of Gold Nanohexapods, Nanorods, and Nanocages for Photothermal Cancer Treatment. ACS Nano 2013, 7, 2068–2077. doi: 10.1021/nn304332s
  15. Linic, S.; Christopher, P.; Ingram, D.B. Plasmonic-Metal Nanostructures for Efficient Conversion of Solar to Chemical Energy. Nat. Mater. 2011, 10, 911–921. doi: 10.1038/nmat3151
  16. Lee, I.; Delbecq, F.; Morales, R.; Albiter, M.A.; Zaera, F. Tuning Selectivity in Catalysis by Controlling Particle Shape. Nat. Mater. 2009, 8, 132–138. doi: 10.1038/nmat2371
  17. Reske, R.; Mistry, H.; Behafarid, F.; Roldan Cuenya, B.; Strasser, P. Particle Size Effects in the Catalytic Electroreduction of CO2 on Cu Nanoparticles. J. Am. Chem. Soc. 2014, 136, 6978–6986. doi: 10.1021/ja500328k
  18. Singh, A.R.; Rohr, B.A.; Schwalbe, J.A.; Cargnello, M.; Chan, K.; Jaramillo, T.F.; Chorkendorff, I.; Nørskov, J.K. Electrochemical Ammonia Synthesis—The Selectivity Challenge. ACS Catal. 2017, 7, 706–709. doi: 10.1021/acscatal.6b03035
  19. Kang, Y.; Li, M.; Cai, Y.; Cargnello, M.; Diaz, R.E.; Gordon, T.R.; Wieder, N.L.; Adzic, R.R.; Gorte, R.J.; Stach, E.A.; et al. Heterogeneous Catalysts Need Not Be so “Heterogeneous”: Monodisperse Pt Nanocrystals by Combining Shape-Controlled Synthesis and Purification by Colloidal Recrystallization. J. Am. Chem. Soc. 2013, 135, 2741–2747. doi: 10.1021/ja3116839
  20. Kline, T.R.; Paxton, W.F.; Mallouk, T.E.; Sen, A. Catalytic Nanomotors: Remote-Controlled Autonomous Movement of Striped Metallic Nanorods. Angew. Chem. Int. Ed. 2005, 44, 744–746. doi: 10.1002/anie.200461890
  21. Choi, S.-I.; Xie, S.; Shao, M.; Odell, J.H.; Lu, N.; Peng, H.-C.; Protsailo, L.; Guerrero, S.; Park, J.; Xia, X.; et al. Synthesis and Characterization of 9 nm Pt–Ni Octahedra with a Record High Activity of 3.3 A/mgPt for the Oxygen Reduction Reaction. Nano Lett. 2013, 13, 3420–3425. doi: 10.1021/nl401881z
  22. Zhang, J.; Yang, H.; Fang, J.; Zou, S. Synthesis and Oxygen Reduction Activity of Shape-Controlled Pt3Ni Nanopolyhedra. Nano Lett. 2010, 10, 638–644. doi: 10.1021/nl903717z
  23. Xie, M.; Shen, M.; Chen, R.; Xia, Y. Development of Highly-Active Catalysts toward Oxygen Reduction by Controlling the Shape and Composition of Pt–Ni Nanocrystals. ACS Appl. Mater. Interfaces 2023, 15, 49146–49153. doi: 10.1021/acsami.3c10514
  24. Xia, Y.; Gilroy, K.D.; Peng, H.-C.; Xia, X. Seed-Mediated Growth of Colloidal Metal Nanocrystals. Angew. Chem. Int. Ed. 2017, 56, 60–95. doi: 10.1002/anie.201604731
  25. Zhang, H.; Li, W.; Jin, M.; Zeng, J.; Yu, T.; Yang, D.; Xia, Y. Controlling the Morphology of Rhodium Nanocrystals by Manipulating the Growth Kinetics with a Syringe Pump. Nano Lett. 2011, 11, 898–903. doi: 10.1021/nl104347j
  26. Peng, H.-C.; Park, J.; Zhang, L.; Xia, Y. Toward a Quantitative Understanding of Symmetry Reduction Involved in the Seed-Mediated Growth of Pd Nanocrystals. J. Am. Chem. Soc. 2015, 137, 6643–6652. doi: 10.1021/jacs.5b03040
  27. Wang, C.; Huang, Z.; Ding, Y.; Xie, M.; Chi, M.; Xia, Y. Facet-Controlled Synthesis of Platinum-Group-Metal Quaternary Alloys: The Case of Nanocubes and {100} Facets. J. Am. Chem. Soc. 2023, 145, 2553–2560. doi: 10.1021/jacs.2c12368
  28. Wang, C.; He, J.; Xia, Y. Controlling the Composition and Elemental Distribution of Bi- and Multi-Metallic Nanocrystals via Dropwise Addition. Nat. Synth. 2024, 3, 1076–1082. doi: 10.1038/s44160-024-00600-x
  29. Niu, G.; Ruditskiy, A.; Vara, M.; Xia, Y. Toward Continuous and Scalable Production of Colloidal Nanocrystals by Switching from Batch to Droplet Reactors. Chem. Soc. Rev. 2015, 44, 5806–5820. doi: 10.1039/C5CS00049A
  30. Zhou, M.; Wang, H.; Vara, M.; Hood, Z.D.; Luo, M.; Yang, T.-H.; Bao, S.; Chi, M.; Xiao, P.; Zhang, Y.; et al. Quantitative Analysis of the Reduction Kinetics Responsible for the One-Pot Synthesis of Pd–Pt Bimetallic Nanocrystals with Different Structures. J. Am. Chem. Soc. 2016, 138, 12263–12270. doi: 10.1021/jacs.6b07213
  31. Luty-Błocho, M.; Pacławski, K.; Wojnicki, M.; Fitzner, K. The Kinetics of Redox Reaction of Gold(III) Chloride Complex Ions with L-Ascorbic Acid. Inorg. Chim. Acta 2013, 395, 189–196. doi: 10.1016/j.ica.2012.10.031
  32. Corbett, J.F. Pseudo First-Order Kinetics. J. Chem. Educ. 1972, 49, 663. doi: 10.1021/ed049p663
  33. Yang, T.-H.; Gilroy, K.D.; Xia, Y. Reduction Rate as a Quantitative Knob for Achieving Deterministic Synthesis of Colloidal Metal Nanocrystals. Chem. Sci. 2017, 8, 6730–6749. doi: 10.1039/C7SC02833D
  34. Smith, J.H.; Luo, Q.; Millheim, S.L.; Millstone, J.E. Decoupling Intrinsic Metal Ion Reduction Rates from Structural Outcomes in Multimetallic Nanoparticles. J. Am. Chem. Soc. 2024, 146, 34822–34832. doi: 10.1021/jacs.4c13826
  35. Rodrigues, T.S.; Zhao, M.; Yang, T.-H.; Gilroy, K.D.; da Silva, A.G.M.; Camargo, P.H.C.; Xia, Y. Synthesis of Colloidal Metal Nanocrystals: A Comprehensive Review on the Reductants. Chem. Eur. J. 2018, 24, 16944–16963. doi: 10.1002/chem.201802194
  36. Zhang, H.; Lu, Y.; Liu, H.; Fang, J. Controllable Synthesis of Three-Dimensional Branched Gold Nanocrystals Assisted by Cationic Surfactant Poly(Diallyldimethylammonium) Chloride in Acidic Aqueous Solution. RSC Adv. 2014, 4, 36757–36764. doi: 10.1039/C4RA07535H
  37. Lee, H.; Habas, S.E.; Somorjai, G.A.; Yang, P. Localized Pd Overgrowth on Cubic Pt Nanocrystals for Enhanced Electrocatalytic Oxidation of Formic Acid. J. Am. Chem. Soc. 2008, 130, 5406–5407. doi: 10.1021/ja800656y
  38. Wilkins, P.C.; Johnson, M.D.; Holder, A.A.; Crans, D.C. Reduction of Vanadium(V) by L-Ascorbic Acid at Low and Neutral pH: Kinetic, Mechanistic, and Spectroscopic Characterization. Inorg. Chem. 2006, 45, 1471–1479. doi: 10.1021/ic050749g
  39. Yu, H.; He, J.; Li, K.K.; Huang, Q.; Ding, Y.; Xia, Y. Synthesis of Ag@Pd Nanocubes and Pd-Based Nanoframes via One-Shot Injection of a Halide-Free Precursor for Continuous Production in a Flow Reactor. Chem. Eur. J. 2025, 31, e202500201. doi: 10.1002/chem.202500201
  40. Fiévet, F.; Ammar-Merah, S.; Brayner, R.; Chau, F.; Giraud, M.; Mammeri, F.; Peron, J.; Piquemal, J.-Y.; Sicard, L.; Viau, G. The Polyol Process: A Unique Method for Easy Access to Metal Nanoparticles with Tailored Sizes, Shapes and Compositions. Chem. Soc. Rev. 2018, 47, 5187–5233. doi: 10.1039/C7CS00777A
  41. Sun, Y.; Xia, Y. Shape-Controlled Synthesis of gold and silver nanoparticles. Science 2002, 298, 2176–2179. doi: 10.1126/science.1077229
  42. Zhang, D.; Chen, Y.; Huang, Y.-S.; Huang, Q.; Kwan Li, K.; Xia, Y. Robust, Reproducible, and Scalable Synthesis of Silver Nanocubes. Chem. Eur. J. 2024, 30, e202400833. doi: 10.1002/chem.202400833
  43. Wiley, B.J.; Xiong, Y.; Li, Z.-Y.; Yin, Y.; Xia, Y. Right Bipyramids of Silver: A New Shape Derived from Single Twinned Seeds. Nano Lett. 2006, 6, 765–768. doi: 10.1021/nl060069q
  44. Wiley, B.J.; Sun, Y.; Xia, Y. Synthesis of Silver Nanostructures with Controlled Shapes and Properties. Acc. Chem. Res. 2007, 40, 1067–1076. doi: 10.1021/ar7000974
  45. Skrabalak, S.E.; Wiley, B.J.; Kim, M.; Formo, E.V.; Xia, Y. On the Polyol Synthesis of Silver Nanostructures: Glycolaldehyde as a Reducing Agent. Nano Lett. 2008, 8, 2077–2081. doi: 10.1021/nl800910d
  46. Sun, Y.; Gates, B.; Mayers, B.; Xia, Y. Crystalline Silver Nanowires by Soft Solution Processing. Nano Lett. 2002, 2, 165–168. doi: 10.1021/nl010093y
  47. Sun, Y.; Mayers, B.; Herricks, T.; Xia, Y. Polyol Synthesis of Uniform Silver Nanowires: A Plausible Growth Mechanism and the Supporting Evidence. Nano Lett. 2003, 3, 955–960. doi: 10.1021/nl034312m
  48. Korte, K.E.; Skrabalak, S.E.; Xia, Y. Rapid Synthesis of Silver Nanowires through a CuCl- or CuCl2-Mediated Polyol Process. J. Mater. Chem. 2008, 18, 437–441. doi: 10.1039/B714072J
  49. Chan, J.M.; Zhang, L.; Yuet, K.P.; Liao, G.; Rhee, J.-W.; Langer, R.; Farokhzad, O.C. PLGA–Lecithin–PEG Core–Shell Nanoparticles for Controlled Drug Delivery. Biomaterials 2009, 30, 1627–1634. doi: 10.1016/j.biomaterials.2008.12.013
  50. Fredenberg, S.; Wahlgren, M.; Reslow, M.; Axelsson, A. The Mechanisms of Drug Release in Poly(Lactic-Co-Glycolic Acid)-Based Drug Delivery Systems—A Review. Int. J. Pharm. 2011, 415, 34–52. doi: 10.1016/j.ijpharm.2011.05.049