Downloads
Download


This work is licensed under a Creative Commons Attribution 4.0 International License.
Photochemical generation of N2 gas by aromatic azide derivatives dissolved in transparent polymers provides a way to generate bubbles without direct heating. In this work, it is shown that molecules
2-azidoanthracene (2N3-AN), 2-(azidomethyl)anthracene (2N3-CH2-AN), 1-azidopyrene (N3-PY), and
1-(azidomethyl)pyrene (N3-CH2-PY) are all capable of generating stable surface layers of N2 bubble after exposure to 365 nm light. Bubble formation is modeled as a multistep kinetic process that involves molecular photolysis, gas transport through the polymer, and bubble nucleation in water. Direct conjugation of the azide substituent to the aromatic core leads to more rapid photolysis and facile bubble formation, but even azides with relatively slow reaction rates can generate dense bubble layers if high light intensities are used. Rapid transport of the photogenerated N2 gas through the polymer appears to be general, with poly(methyl methacrylate), polystyrene and polycarbonate all supporting robust bubble growth. The photoinduced bubble layer was shown to significantly enhance the visibility of a coated glass pipette when imaged by an ultrasound instrument. The ability to prepare polymer coatings that undergo photochemical gas evolution provides a new functionality that may be useful in medical imaging applications.
References
- Hoffman, A.S. Stimuli-Responsive Polymers: Biomedical Applications and Challenges for Clinical Translation. Adv. Drug Deliv. Rev. 2013, 65, 10–16. https://doi.org/10.1016/j.addr.2012.11.004.
- Wei, M.; Gao, Y.; Li, X.; Serpe, M.J. Stimuli-Responsive Polymers and Their Applications. Polym. Chem. 2017, 8, 127–143. https://doi.org/10.1039/C6PY01585A.
- Zhao, Y.; Hua, M.; Yan, Y.; Wu, S.; Alsaid, Y.; He, X. Stimuli-Responsive Polymers for Soft Robotics. Annu. Rev. Control Robot. Auton. Syst. 2022, 5, 515–545. https://doi.org/10.1146/annurev-control-042920-014327.
- McCormick, M.E.; Bhattacharyya, R. Drag Reduction of a Submersible Hull by Electrolysis. Nav. Eng. J. 1973, 85, 11–16. https://doi.org/10.1111/j.1559-3584.1973.tb04788.x.
- Murai, Y. Frictional Drag Reduction by Bubble Injection. Exp. Fluids 2014, 55, 1773. https://doi.org/10.1007/s00348-014-1773-x.
- Kim, H.; Chang, J.H. Increased Light Penetration Due to Ultrasound-Induced Air Bubbles in Optical Scattering Media. Sci. Rep. 2017, 7, 16105. https://doi.org/10.1038/s41598-017-16444-9.
- Bhanawat, A.; Zhu, K.; Pilon, L. How Do Bubbles Affect Light Absorption in Photoelectrodes for Solar Water Splitting? Sustain. Energy Fuels 2022, 6, 910–924. https://doi.org/10.1039/D1SE01730F.
- Domenico, S.N. Acoustic Wave Propagation in Air-bubble Curtains in Water—Part I: History and Theory. Geophysics 1982, 47, 345–353. https://doi.org/10.1190/1.1441340.
- Leroy, V.; Strybulevych, A.; Lanoy, M.; Lemoult, F.; Tourin, A.; Page, J.H. Superabsorption of Acoustic Waves with Bubble Metascreens. Phys. Rev. B 2015, 91, 020301. https://doi.org/10.1103/PhysRevB.91.020301.
- Sharma, G.S.; Skvortsov, A.; MacGillivray, I.; Kessissoglou, N. Sound Scattering by a Bubble Metasurface. Phys. Rev. B 2020, 102, 214308. https://doi.org/10.1103/PhysRevB.102.214308.
- Huang, Z.; Zhao, S.; Su, M.; Yang, Q.; Li, Z.; Cai, Z.; Zhao, H.; Hu, X.; Zhou, H.; Li, F.; et al. Bioinspired Patterned Bubbles for Broad and Low-Frequency Acoustic Blocking. ACS Appl. Mater. Interfaces 2020, 12, 1757–1764. https://doi.org/10.1021/acsami.9b15683.
- Gong, X.-T.; Zhou, H.-T.; Zhang, S.-C.; Wang, Y.-F.; Wang, Y.-S. Tunable Sound Transmission through Water–Air Interface by Membrane-Sealed Bubble Metasurface. Appl. Phys. Lett. 2023, 123, 231703. https://doi.org/10.1063/5.0171461.
- Goyal, R.; Athanassiadis, A.G.; Ma, Z.; Fischer, P. Amplification of Acoustic Forces Using Microbubble Arrays Enables Manipulation of Centimeter-Scale Objects. Phys. Rev. Lett. 2022, 128, 254502. https://doi.org/10.1103/PhysRevLett.128.254502.
- Liang, X.; Kumar, V.; Ahmadi, F.; Zhu, Y. Manipulation of Droplets and Bubbles for Thermal Applications. Droplet 2022, 1, 80–91. https://doi.org/10.1002/dro2.21.
- Metwally, K.; Mensah, S.; Baffou, G. Fluence Threshold for Photothermal Bubble Generation Using Plasmonic Nanoparticles. J. Phys. Chem. C 2015, 119, 28586–28596. https://doi.org/10.1021/acs.jpcc.5b09903.
- Baffou, G.; Polleux, J.; Rigneault, H.; Monneret, S. Super-Heating and Micro-Bubble Generation around Plasmonic Nanoparticles under Cw Illumination. J. Phys. Chem. C 2014, 118, 4890–4898. https://doi.org/10.1021/jp411519k.
- Li, J.; Zhao, F.; Deng, Y.; Liu, D.; Chen, C.-H.; Shih, W.-C. Photothermal Generation of Programmable Microbubble Array on Nanoporous Gold Disks. Opt. Express 2018, 26, 16893. https://doi.org/10.1364/OE.26.016893.
- Ohannesian, N.; Li, J.; Misbah, I.; Zhao, F.; Shih, W.-C. Directed Concentrating of Micro-/Nanoparticles via Near-Infrared Laser Generated Plasmonic Microbubbles. ACS Omega 2020, 5, 32481–32489. https://doi.org/10.1021/acsomega.0c04610.
- Hu, M.; Wang, F.; Chen, L.; Huo, P.; Li, Y.; Gu, X.; Chong, K.L.; Deng, D. Near-Infrared-Laser-Navigated Dancing Bubble within Water via a Thermally Conductive Interface. Nat. Commun. 2022, 13, 5749. https://doi.org/10.1038/s41467-022-33424-4.
- Prosperetti, A. Vapor Bubbles. Annu. Rev. Fluid Mech. 2017, 49, 221–248. https://doi.org/10.1146/annurev-fluid-010816-060221.
- Shields, D.J.; Karothu, D.P.; Sambath, K.; Ranaweera, R.A.A.U.; Schramm, S.; Duncan, A.; Duncan, B.; Krause, J.A.; Gudmundsdottir, A.D.; Naumov, P. Cracking under Internal Pressure: Photodynamic Behavior of Vinyl Azide Crystals through N2 Release. J. Am. Chem. Soc. 2020, 142, 18565–18575. https://doi.org/10.1021/jacs.0c07830.
- Ghate, P.P.; Hanson, K.M.; Lam, K.; Al-Kaysi, R.O.; Bardeen, C.J. Generating Stable Nitrogen Bubble Layers on Poly(Methyl Methacrylate) Films by Photolysis of 2-Azidoanthracene. Langmuir 2024, 40, 4054–4062. https://doi.org/10.1021/acs.langmuir.3c02869.
- Biswas, B.; Venkateswarulu, M.; Gaur, P.; Sharma, Y.; Sinha, S.; Ghosh, S. Triggered Emission for Rapid Detection of Hydrogen Sulfide Chaperoned by Large Stokes Shift. J. Photochem. Photobiol. A Chem. 2019, 371, 264–270. https://doi.org/10.1016/j.jphotochem.2018.11.011.
- Pinchasik, B.-E.; Schönfeld, F.; Kappl, M.; Butt, H.-J. Bubbles Nucleating on Superhydrophobic Micropillar Arrays under Flow. Soft Matter 2019, 15, 8175–8183. https://doi.org/10.1039/C9SM01224A.
- Deng, X.; Shan, Y.; Meng, X.; Yu, Z.; Lu, X.; Ma, Y.; Zhao, J.; Qiu, D.; Zhang, X.; Liu, Y.; et al. Direct Measuring of Single–Heterogeneous Bubble Nucleation Mediated by Surface Topology. Proc. Natl. Acad. Sci. USA 2022, 119, e2205827119. https://doi.org/10.1073/pnas.2205827119.
- Beechem, J.M.; Ameloot, M.; Brand, L. Global and Target Analysis of Complex Decay Phenomena. Instrum. Sci. Technol. 1985, 14, 379–402. https://doi.org/10.1080/10739148508543585.
- Reiser, A.; Bowes, G.; Horne, R.J. Photolysis of Aromatic Azides. Part 1—Electronic Spectra of Aromatic Nitrenes and Their Parent Azides. Trans. Faraday Soc. 1966, 62, 3162–3169. https://doi.org/10.1039/TF9666203162.
- Alvarado, R.; Grivet, J.-P.; Igier, C.; Barcelo, J.; Rigaudy, J. Spectroscopic Studies of Azides and Nitrenes Derived from Anthracene. J. Chem. Soc., Faraday Trans. 1977, 73, 844. https://doi.org/10.1039/f29777300844.
- Wentrup, C. Nitrenes, Carbenes, Diradicals, and Ylides. Interconversions of Reactive Intermediates. Acc. Chem. Res. 2011, 44, 393–404. https://doi.org/10.1021/ar700198z.
- Sankaranarayanan, J.; Rajam, S.; Hadad, C.M.; Gudmundsdottir, A.D. The Ability of Triplet Nitrenes to Abstract Hydrogen Atoms. J Phys. Org. Chem. 2010, 23, 370–375. https://doi.org/10.1002/poc.1654.
- Reiser, A.; Marley, R. Photolysis of Aromatic Azides. Part 3—Quantum Yield and Mechanism. Trans. Faraday Soc. 1968, 64, 1806–1815. https://doi.org/10.1039/TF9686401806.
- Gritsan, N.P.; Pritchina, E.A. The Mechanism of Photolysis of Aromatic Azides. Russ. Chem. Rev. 1992, 61, 500–516. https://doi.org/10.1070/RC1992v061n05ABEH000959.
- Soto, J.; Otero, J.C. Conservation of El-Sayed’s Rules in the Photolysis of Phenyl Azide: Two Independent Decomposition Doorways for Alternate Direct Formation of Triplet and Singlet Phenylnitrene. J. Phys. Chem. A 2019, 123, 9053–9060. https://doi.org/10.1021/acs.jpca.9b06915.
- Rubin, M.B.; Noyes, R.M. Thresholds for Nucleation of Bubbles of Nitrogen in Various Solvents. J. Phys. Chem. 1992, 96, 993–1000. https://doi.org/10.1021/j100181a082.
- Maloth, R.K.N.; Khayat, R.E.; DeGroot, C.T. Bubble Growth in Supersaturated Liquids. Fluids 2022, 7, 365. https://doi.org/10.3390/fluids7120365.
- Huber, C.; Su, Y.; Nguyen, C.T.; Parmigiani, A.; Gonnermann, H.M.; Dufek, J. A New Bubble Dynamics Model to Study Bubble Growth, Deformation, and Coalescence. JGR Solid Earth 2014, 119, 216–239. https://doi.org/10.1002/2013JB010419.
- Moreno Soto, Á.; Prosperetti, A.; Lohse, D.; Van Der Meer, D. Gas Depletion through Single Gas Bubble Diffusive Growth and Its Effect on Subsequent Bubbles. J. Fluid Mech. 2017, 831, 474–490. https://doi.org/10.1017/jfm.2017.623.
- Sun, I.-C.; Emelianov, S. Gas-Generating Nanoparticles for Contrast-Enhanced Ultrasound Imaging. Nanoscale 2019, 11, 16235–16240. https://doi.org/10.1039/C9NR04471J.
- Sun, I.-C.; Dumani, D.S.; Emelianov, S.Y. Applications of the Photocatalytic and Photoacoustic Properties of Gold Nanorods in Contrast-Enhanced Ultrasound and Photoacoustic Imaging. ACS Nano 2024, 18, 3575–3582. https://doi.org/10.1021/acsnano.3c11223.
- Frazer, R.Q.; Byron, R.T.; Osborne, P.B.; West, K.P. PMMA: An Essential Material in Medicine and Dentistry. J. Long Term Eff. Med. Implant. 2005, 15, 629–639. https://doi.org/10.1615/JLongTermEffMedImplants.v15.i6.60.
- Blomley, M.J.K. Science, Medicine, and the Future: Microbubble Contrast Agents: A New Era in Ultrasound. BMJ 2001, 322, 1222–1225. https://doi.org/10.1136/bmj.322.7296.1222.
- Lee, H.; Kim, H.; Han, H.; Lee, M.; Lee, S.; Yoo, H.; Chang, J.H.; Kim, H. Microbubbles Used for Contrast Enhanced Ultrasound and Theragnosis: A Review of Principles to Applications. Biomed. Eng. Lett. 2017, 7, 59–69. https://doi.org/10.1007/s13534-017-0016-5.
- Ferrara, K.; Pollard, R.; Borden, M. Ultrasound Microbubble Contrast Agents: Fundamentals and Application to Gene and Drug Delivery. Annu. Rev. Biomed. Eng. 2007, 9, 415–447. https://doi.org/10.1146/annurev.bioeng.8.061505.095852.
- Huang, J.; Triedman, J.K.; Vasilyev, N.V.; Suematsu, Y.; Cleveland, R.O.; Dupont, P.E. Imaging Artifacts of Medical Instruments in Ultrasound-Guided Interventions. J. Ultrasound Med. 2007, 26, 1303–1322. https://doi.org/10.7863/jum.2007.26.10.1303.
- Godin, O.A. Sound Transmission through Water–Air Interfaces: New Insights into an Old Problem. Contemp. Phys. 2008, 49, 105–123. https://doi.org/10.1080/00107510802090415.
- Patel, V.M.; Patel, C.K.; Patel, K.C.; Patel, R.D. Diffusion of Gases in Poly(Methyl Methacrylate). Makromol. Chem. 1972, 158, 65–79. https://doi.org/10.1002/macp.1972.021580107.
- Haraya, K.; Hwang, S.-T. Permeation of Oxygen, Argon and Nitrogen through Polymer Membranes. J. Membr. Sci. 1992, 71, 13–27. https://doi.org/10.1016/0376-7388(92)85002-Z.
- Kung, Y.-C.; Hsiao, S.-H. Fluorescent and Electrochromic Polyamides with Pyrenylamine Chromophore. J. Mater. Chem. 2010, 20, 5481. doi: 10.1039/c0jm00495b
- Bräse, S., Banert, K., Eds.; Organic Azides: Syntheses and Applications; John Wiley: Chichester, UK, 2010. doi: 10.1002/9780470682517
- Morales-Espinoza, E.G.; Lijanova, I.V.; Morales-Saavedra, O.G.; Torres-Zuñiga, V.; Hernandez-Ortega, S.; Martínez-García, M. Synthesis of Porphyrin-Dendrimers with a Pyrene in the Periphery and Their Cubic Nonlinear Optical Properties. Molecules 2011, 16, 6950–6968. doi: 10.3390/molecules16086950
- Ingale, S.A.; Seela, F. A Ratiometric Fluorescent On–Off Zn2+ Chemosensor Based on a Tripropargylamine Pyrene Azide Click Adduct. J. Org. Chem. 2012, 77, 9352–9356. doi: 10.1021/jo3014319
- Jiang, J.; Lima, O.V.; Pei, Y.; Jiang, Z.; Chen, Z.; Yu, C.; Wang, J.; Zeng, X.C.; Forsythe, E.; Tan, L. Self-Assembled Nanolayers of Conjugated Silane with Π−π Interlocking. ACS Nano 2010, 4, 3773–3780. doi: 10.1021/nn100273m
- Okita, T.; Muto, K.; Yamaguchi, J. Decarbonylative Methylation of Aromatic Esters by a Nickel Catalyst. Org. Lett. 2018, 20, 3132–3135. doi: 10.1021/acs.orglett.8b01233
- Arjunan, P.; Berlin, K.D. An improved synthesis of 2-anthraldehyde. Org. Prep. Proced. Int. 1981, 13, 368–371. doi: 10.1080/00304948109356143