Downloads
Download


This work is licensed under a Creative Commons Attribution 4.0 International License.
Environmental pollution, particularly water contamination by heavy metals and organic pollutants, presents a critical global challenge requiring effective monitoring solutions. Colorimetric plasmonic nanosensors, primarily utilizing gold nanoparticles (AuNPs) due to their exceptional stability and tunable optical properties, offer a promising approach for rapid, cost-effective, and label-free pollutant detection. This review highlights recent advancements in AuNP-based colorimetric plasmonic nanosensors for environmental monitoring. We explore their fundamental sensing mechanisms and critically examine their applications in detecting a broad spectrum of waterborne contaminants, including heavy metals, inorganic species, and diverse organic pollutants. By showcasing the versatility and potential of these emerging technologies, this review emphasizes their significant contribution towards developing more efficient and accessible tools for mitigating environmental pollution and protecting public health.
Keywords:
nanosensor pollution surface plasmon resonance nanoparticle plasmonic coupling aggregationReferences
- Sumaira; Siddique, H.M.A. Industrialization, energy consumption, and environmental pollution: Evidence from South Asia. Environ. Sci. Pollut. Res. 2023, 30, 4094–4102. https://doi.org/10.1007/s11356-022-22317-0.
- Lin, L.; Yang, H.; Xu, X. Effects of Water Pollution on Human Health and Disease Heterogeneity: A Review. Front. Environ. Sci. 2022, 10, 880246. https://doi.org/10.3389/fenvs.2022.880246.
- Wen, Y.; Schoups, G.; van de Giesen, N. Organic pollution of rivers: Combined threats of urbanization, livestock farming and global climate change. Sci. Rep. 2017, 7, 43289. https://doi.org/10.1038/srep43289.
- Boyd, R.S. Heavy metal pollutants and chemical ecology: Exploring new frontiers. J. Chem. Ecol. 2010, 36, 46–58. https://doi.org/10.1007/s10886-009-9730-5.
- Lipczynska-Kochany, E. Humic substances, their microbial interactions and effects on biological transformations of organic pollutants in water and soil: A review. Chemosphere 2018, 202, 420–437. https://doi.org/10.1016/j.chemosphere.2018.03.104.
- Zhu, Z.-Y.; Zhang, J.; Wu, Y.; Zhang, Y.-Y.; Lin, J.; Liu, S.-M. Hypoxia off the Changjiang (Yangtze River) Estuary: Oxygen depletion and organic matter decomposition. Mar. Chem. 2011, 125, 108–116. https://doi.org/10.1016/j.marchem.2011.03.005.
- Santos, F.J.; Galceran, M.T. The application of gas chromatography to environmental analysis. Trends Anal. Chem 2002, 21, 672–685. doi: 10.1016/S0165-9936(02)00813-0
- Richardson, S.D. Environmental Mass Spectrometry: Emerging Contaminants and Current Issues. Anal. Chem. 2008, 80, 4373–4402. doi: 10.1021/ac800660d
- Pohl, P. Determination of metal content in honey by atomic absorption and emission spectrometries. Trends Anal. Chem 2009, 28, 117–128. https://doi.org/10.1016/j.trac.2008.09.015.
- Rekhi, H.; Rani, S.; Sharma, N.; Malik, A.K. A Review on Recent Applications of High-Performance Liquid Chromatography in Metal Determination and Speciation Analysis. Crit. Rev. Anal. Chem. 2017, 47, 524–537. https://doi.org/10.1080/10408347.2017.1343659.
- Liu, B.; Zhuang, J.; Wei, G. Recent advances in the design of colorimetric sensors for environmental monitoring. Environ. Sci. Nano 2020, 7, 2195–2213. https://doi.org/10.1039/d0en00449a.
- Wei, H.; Hossein Abtahi, S.M.; Vikesland, P.J. Plasmonic colorimetric and SERS sensors for environmental analysis. Environ. Sci. Nano 2015, 2, 120–135. https://doi.org/10.1039/c4en00211c.
- Tang, L.; Li, J. Plasmon-Based Colorimetric Nanosensors for Ultrasensitive Molecular Diagnostics. ACS Sens. 2017, 2, 857–875. https://doi.org/10.1021/acssensors.7b00282.
- Balasubramanian, S.K.; Yang, L.; Yung, L.Y.; Ong, C.N.; Ong, W.Y.; Yu, L.E. Characterization, purification, and stability of gold nanoparticles. Biomaterials 2010, 31, 9023–9030. https://doi.org/10.1016/j.biomaterials.2010.08.012.
- Willets, K.A.; Van Duyne, R.P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem 2007, 58, 267–297. https://doi.org/10.1146/annurev.physchem.58.032806.104607.
- Link, S.; El-Sayed, M.A. Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods. J. Phys. Chem. B 1999, 103, 8410–8426. doi: 10.1021/jp9917648
- Kelly, K.L.; Coronado, E.; Zhao, L.L.; Schatz, G.C. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 2003, 107, 668–677. doi: 10.1021/jp026731y
- Gao, C.; Vuong, J.; Zhang, Q.; Liu, Y.; Yin, Y. One-step seeded growth of Au nanoparticles with widely tunable sizes. Nanoscale 2012, 4, 2875–2878. https://doi.org/10.1039/c2nr30300k.
- Huang, X.; El-Sayed, M.A. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res. 2010, 1, 13–28. https://doi.org/10.1016/j.jare.2010.02.002.
- Zeng, J.; Zhang, Y.; Zeng, T.; Aleisa, R.; Qiu, Z.; Chen, Y.; Huang, J.; Wang, D.; Yan, Z.; Yin, Y. Anisotropic plasmonic nanostructures for colorimetric sensing. Nano Today 2020, 32, 100855. https://doi.org/10.1016/j.nantod.2020.100855.
- Murphy, C.J.; Sau, T.K.; Gole, A.M.; Orendorff, C.J.; Gao, J.; Gou, L.; Hunyadi, S.E.; Li, T. Anisotropic Metal Nanoparticles: Synthesis, Assembly, and Optical Applications. J. Phys. Chem. B 2005, 109, 13857–13870. doi: 10.1021/jp0516846
- Zhong, Z.; Patskovskyy, S.; Bouvrette, P.; Luong, J.H.T.; Gedanken, A. The Surface Chemistry of Au Colloids and Their Interactions with Functional Amino Acids. J. Phys. Chem. B 2004, 108, 4046–4052. doi: 10.1021/jp037056a
- Jain, P.K.; Huang, W.; El-Sayed, M.A. On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation. Nano Lett. 2007, 7, 2080–2088. doi: 10.1021/nl071008a
- Montano-Priede, J.L.; Sanroman-Iglesias, M.; Zabala, N.; Grzelczak, M.; Aizpurua, J. Robust Rules for Optimal Colorimetric Sensing Based on Gold Nanoparticle Aggregation. ACS Sens. 2023, 8, 1827–1834. https://doi.org/10.1021/acssensors.3c00287.
- Tripathi, R.M.; Park, S.H.; Kim, G.; Kim, D.-H.; Ahn, D.; Kim, Y.M.; Kwon, S.J.; Yoon, S.-Y.; Kang, H.J.; Chung, S.J. Metal-induced redshift of optical spectra of gold nanoparticles: An instant, sensitive, and selective visual detection of lead ions. Int. Biodeter. Biodegr 2019, 144, 104740. https://doi.org/10.1016/j.ibiod.2019.104740.
- Chen, L.; Lou, T.; Yu, C.; Kang, Q.; Chen, L. N-1-(2-mercaptoethyl)thymine modification of gold nanoparticles: A highly selective and sensitive colorimetric chemosensor for Hg2+ . Analyst 2011, 136, 4770–4773. https://doi.org/10.1039/c1an15585g.
- Zhang, D.; Chu, S.; Wang, L.; Zhan, X.; Zhou, P.; Zhang, D. Dual-mode colorimetric determination of As(III) based on negatively-charged aptamer-mediated aggregation of positively-charged AuNPs. Anal. Chim. Acta 2022, 1221, 340111. https://doi.org/10.1016/j.aca.2022.340111.
- Chen, G.H.; Chen, W.Y.; Yen, Y.C.; Wang, C.W.; Chang, H.T.; Chen, C.F. Detection of mercury(II) ions using colorimetric gold nanoparticles on paper-based analytical devices. Anal. Chem. 2014, 86, 6843–6849. https://doi.org/10.1021/ac5008688.
- Rana, K.; Bhamore, J.R.; Rohit, J.V.; Park, T.-J.; Kailasa, S.K. Ligand exchange reactions on citrate-gold nanoparticles for a parallel colorimetric assay of six pesticides. New J. Chem. 2018, 42, 9080–9090. https://doi.org/10.1039/c8nj01294f.
- Wang, Z.; Lee, J.H.; Lu, Y. Label-Free Colorimetric Detection of Lead Ions with a Nanomolar Detection Limit and Tunable Dynamic Range by using Gold Nanoparticles and DNAzyme. Adv. Mater. 2008, 20, 3263–3267. https://doi.org/10.1002/adma.200703181.
- Chen, Z.; Zhang, Z.; Qu, C.; Pan, D.; Chen, L. Highly sensitive label-free colorimetric sensing of nitrite based on etching of gold nanorods. Analyst 2012, 137, 5197–5200. https://doi.org/10.1039/c2an35787a.
- Lin, J.-M.; Huang, Y.-Q.; Liu, Z.-b.; Lin, C.-Q.; Ma, X.; Liu, J.-M. Design of an ultra-sensitive gold nanorod colorimetric sensor and its application based on formaldehyde reducing Ag+ . RSC Adv. 2015, 5, 99944–99950. https://doi.org/10.1039/c5ra16266a.
- Park, J.W.; Shumaker-Parry, J.S. Structural study of citrate layers on gold nanoparticles: Role of intermolecular interactions in stabilizing nanoparticles. JAm Chem Soc 2014, 136, 1907–1921. https://doi.org/10.1021/ja4097384.
- Chen, S.; Fang, Y.M.; Xiao, Q.; Li, J.; Li, S.B.; Chen, H.J.; Sun, J.J.; Yang, H.H. Rapid visual detection of aluminium ion using citrate capped gold nanoparticles. Analyst 2012, 137, 2021–2023. https://doi.org/10.1039/c2an35129c.
- Chai, F.; Wang, C.; Wang, T.; Li, L.; Su, Z. Colorimetric detection of Pb2+ using glutathione functionalized gold nanoparticles. ACSAppl. Mater. Interfaces 2010, 2, 1466–1470. https://doi.org/10.1021/am100107k.
- Beqa, L.; Singh, A.K.; Khan, S.A.; Senapati, D.; Arumugam, S.R.; Ray, P.C. Gold nanoparticle-based simple colorimetric and ultrasensitive dynamic light scattering assay for the selective detection of Pb(II) from paints, plastics, and water samples. ACSAppl. Mater. Interfaces 2011, 3, 668–673. https://doi.org/10.1021/am101118h.
- Zheng, B.; Li, J.; Zheng, Z.; Zhang, C.; Huang, C.; Hong, J.; Li, Y.; Wang, J. Rapid colorimetric detection of arsenic (III) by glutathione functionalized gold nanoparticles based on RGB extracting system. Opt. Laser Technol. 2021, 133, 106522. https://doi.org/10.1016/j.optlastec.2020.106522.
- Dominguez-Gonzalez, R.; Gonzalez Varela, L.; Bermejo-Barrera, P. Functionalized gold nanoparticles for the detection of arsenic in water. Talanta 2014, 118, 262–269. https://doi.org/10.1016/j.talanta.2013.10.029.
- Zhang, X.; Zhao, H.; Xue, Y.; Wu, Z.; Zhang, Y.; He, Y.; Li, X.; Yuan, Z. Colorimetric sensing ofclenbuterol using gold nanoparticles in the presence of melamine. Biosens. Bioelectron. 2012, 34, 112–117. https://doi.org/10.1016/j.bios.2012.01.026.
- Ravi Gunupuru; Debdeep Maity; Gopala R Bhadu; Ashish Chakraborty; Srivastava, D.N.; Paul, P. Colorimetric detection of Cu2+ and Pb2+ ions using calix[4]arene functionalized gold nanoparticles. J. Chem. Sci. 2014, 126, 627–635. doi: 10.1007/s12039-014-0600-5
- Liu, J.; Lu, Y. A Colorimetric Lead Biosensor Using DNAzyme-Directed Assembly of Gold Nanoparticles. J. Am. Chem. Soc. 2003, 125, 6642–6643. doi: 10.1021/ja034775u
- Liu, J.; Lu, Y. Accelerated Color Change of Gold Nanoparticles Assembled by DNAzymes for Simple and Fast Colorimetric Pb2+ Detection. J. Am. Chem. Soc. 2004, 126, 12298–12305. doi: 10.1021/ja046628h
- Turkevich, J.; Stevenson, P.C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55–75. doi: 10.1039/df9511100055
- Liu, D.; Wang, Z.; Jiang, X. Gold nanoparticles for the colorimetric and fluorescent detection of ions and small organic molecules. Nanoscale 2011, 3, 1421–1433. https://doi.org/10.1039/c0nr00887g.
- Berlina, A.N.; Sharma, A.K.; Zherdev, A.V.; Gaur, M.S.; Dzantiev, B.B. Colorimetric Determination of Lead Using Gold Nanoparticles. Anal. Lett. 2014, 48, 766–782. https://doi.org/10.1080/00032719.2014.961641.
- Yoosaf, K.; Ipe, B.I.; Suresh, C.H.; Thomas, K.G. In Situ Synthesis of Metal Nanoparticles and Selective Naked-Eye Detection of Lead Ions from Aqueous Media. J. Phys. Chem. C 2007, 111, 12839–12847. doi: 10.1021/jp073923q
- Sau, T.K.; Murphy, C.J. Seeded High Yield Synthesis of Short Au Nanorods in Aqueous Solution. Langmuir 2004, 20, 6414–6420. doi: 10.1021/la049463z
- Ye, X.; Jin, L.; Caglayan, H.; Chen, J.; Xing, G.; Zheng, C.; Doan-Nguyen, V.; Kang, Y.; Engheta, N.; Kagan, C.R.; et al. Improved Size-Tunable Synthesis of Monodisperse Gold Nanorods through the Use of Aromatic Additives. ACS Nano 2012, 6, 2804–2817. doi: 10.1021/nn300315j
- Tan, M.G.; Zhang, G.L.; Li, X.L.; Zhang, Y.X.; Yue, W.S.; Chen, J.M.; Wang, Y.S.; Li, A.G.; Li, Y.; Zhang, Y.M.; et al. Comprehensive Study of Lead Pollution in Shanghai by Multiple Techniques. Anal. Chem. 2006, 78, 8044–8050. doi: 10.1021/ac061365q
- Raj, K.; Das, A.P. Lead pollution: Impact on environment and human health and approach for a sustainable solution. Environ. Chem. Ecotox 2023, 5, 79–85. https://doi.org/10.1016/j.enceco.2023.02.001.
- Collin, M.S.; Venkatraman, S.K.; Vijayakumar, N.; Kanimozhi, V.; Arbaaz, S.M.; Stacey, R.G.S.; Anusha, J.; Choudhary, R.; Lvov, V.; Tovar, G.I.; et al. Bioaccumulation of lead (Pb) and its effects on human: A review. J. Hazard. Mater. Adv. 2022, 7, 100094. https://doi.org/10.1016/j.hazadv.2022.100094.
- Reuben, A.; Caspi, A.; Belsky, D.W.; Broadbent, J.; Harrington, H.; Sugden, K.; Houts, R.M.; Ramrakha, S.; Poulton, R.; Moffitt, T.E. Association of Childhood Blood Lead Levels With Cognitive Function and Socioeconomic Status at Age 38 Years and With IQ Change and Socioeconomic Mobility Between Childhood and Adulthood. JAMA 2017, 317, 1244–1251. https://doi.org/10.1001/jama.2017.1712.
- Frost, M.S.; Dempsey, M.J.; Whitehead, D.E. The response of citrate functionalised gold and silver nanoparticles to the addition of heavy metal ions. Colloids Surf. A 2017, 518, 15–24. https://doi.org/10.1016/j.colsurfa.2016.12.036.
- Huang, K.W.; Yu, C.J.; Tseng, W.L. Sensitivity enhancement in the colorimetric detection of lead(II) ion using gallic acid-capped gold nanoparticles: Improving size distribution and minimizing interparticle repulsion. Biosens. Bioelectron. 2010, 25, 984–989. https://doi.org/10.1016/j.bios.2009.09.006.
- Lee, I.L.; Sung, Y.-M.; Wu, S.-P. Triazole-acetate functionalized gold nanoparticles for colorimetric Pb(ii) sensing. RSC Adv. 2014, 4, 25251–25256. https://doi.org/10.1039/c4ra02448f.
- Khanna, K.; Kohli, S.K.; Kumar, P.; Ohri, P.; Bhardwaj, R.; Alam, P.; Ahmad, P. Arsenic as hazardous pollutant: Perspectives on engineering remediation tools. Sci. Total Environ. 2022, 838, 155870. https://doi.org/10.1016/j.scitotenv.2022.155870.
- Hughes, M.F. Arsenic toxicity and potential mechanisms of action. Toxicol. Lett. 2002, 133, 1–16. doi: 10.1016/S0378-4274(02)00084-X
- Gong, L.; Du, B.; Pan, L.; Liu, Q.; Yang, K.; Wang, W.; Zhao, H.; Wu, L.; He, Y. Colorimetric aggregation assay for arsenic(III) using gold nanoparticles. Microchim. Acta 2017, 184, 1185–1190. https://doi.org/10.1007/s00604-017-2122-6.
- Boruah, B.S.; Biswas, R.; Deb, P. A green colorimetric approach towards detection of arsenic (III): A pervasive environmental pollutant. Opt. Laser Technol. 2019, 111, 825–829. https://doi.org/10.1016/j.optlastec.2018.09.023.
- Hylander, L.D.; Goodsite, M.E. Environmental costs of mercury pollution. Sci. Total Environ. 2006, 368, 352–370. https://doi.org/10.1016/j.scitotenv.2005.11.029.
- Bernhoft, R.A. Mercury toxicity and treatment: A review of the literature. J. Environ. Public Health 2012, 2012, 460508. https://doi.org/10.1155/2012/460508.
- Zhu, Y.; Cai, Y.; Zhu, Y.; Zheng, L.; Ding, J.; Quan, Y.; Wang, L.; Qi, B. Highly sensitive colorimetric sensor for Hg2+ detection based on cationic polymer/DNA interaction. Biosens. Bioelectron. 2015, 69, 174–178. https://doi.org/10.1016/j.bios.2015.02.018.
- Chen, L.; Li, J.; Chen, L. Colorimetric detection of mercury species based on functionalized gold nanoparticles. ACS Appl. Mater. Interfaces 2014, 6, 15897–15904. https://doi.org/10.1021/am503531c.
- Hu, Y.; Huang, Z.; Liu, B.; Liu, J. Hg(II) Adsorption on Gold Nanoparticles Dominates DNA-Based Label-Free Colorimetric Sensing. ACSAppl. Nano Mater. 2021, 4, 1377–1384. https://doi.org/10.1021/acsanm.0c02923.
- Alasfar, R.H.; Isaifan, R.J. Aluminum environmental pollution: The silent killer. Environ. Sci. Pollut. Res. 2021, 28, 44587–44597. https://doi.org/10.1007/s11356-021-14700-0.
- Bonfiglio, R.; Scimeca, M.; Mauriello, A. The impact of aluminum exposure on human health. Arch. Toxicol. 2023, 97, 2997–2998. https://doi.org/10.1007/s00204-023-03581-6.
- Luo, X.; Xie, X.; Meng, Y.; Sun, T.; Ding, J.; Zhou, W. Ligands dissociation induced gold nanoparticles aggregation for colorimetric Al3+ detection. Anal. Chim. Acta 2019, 1087, 76–85. https://doi.org/10.1016/j.aca.2019.08.045.
- Megarajan, S.; Veerappan, A. A selective pink-to-purple colorimetric sensor for aluminium via the aggregation of gold nanoparticles. Opt. Mater. 2020, 108, 110177. https://doi.org/10.1016/j.optmat.2020.110177.
- Huang, P.; Li, J.; Liu, X.; Wu, F. Colorimetric determination of aluminum(III) based on the aggregation of Schiff base- functionalized gold nanoparticles. Microchim. Acta 2015, 183, 863–869. https://doi.org/10.1007/s00604-015-1734-y.
- Li, X.; Xu, G.; Xia, M.; Liu, X.; Fan, F.; Dou, J. Research on the remediation of cesium pollution by adsorption: Insights from bibliometric analysis. Chemosphere 2022, 308, 136445. https://doi.org/10.1016/j.chemosphere.2022.136445.
- Qiu, J.; Fu, L.; Wang, H.; Zou, R.; Zhang, Y.; Li, X.; Wu, A. Colorimetric detection of Cs+ based on the nonmorphological transition mechanism of gold nanoparticles in the presence of Prussian blue. New J. Chem. 2020, 44, 2241–2246. https://doi.org/10.1039/c9nj05301h.
- Tsepina, N.; Kolesnikov, S.; Minnikova, T.; Timoshenko, A.; Kazeev, K. Soil Contamination by Silver and Assessment of Its Ecotoxicity. Rev. Agric. Sci. 2022, 10, 186–205. https://doi.org/10.7831/ras.10.0_186.
- Wang, F.; Lu, Y.; Chen, Y.; Sun, J.; Liu, Y. Colorimetric Nanosensor Based on the Aggregation of AuNP Triggered by Carbon Quantum Dots for Detection of Ag+ Ions. ACS Sustain. Chem. Eng 2018, 6, 3706–3713. https://doi.org/10.1021/acssuschemeng.7b04067.
- Peter, A.L.; Viraraghavan, T. Thallium: A review of public health and environmental concerns. Environ. Int 2005, 31, 493–501. https://doi.org/10.1016/j.envint.2004.09.003.
- Lei, F.; Ye, Z.; Dong, Z.; Zhang, X.; Wu, P. Thioflavine T-induced charge neutralization assembly of AuNPs for colorimetric sensing of thallium. Sens. Actuators B Chem. 2022, 370, 132437. https://doi.org/10.1016/j.snb.2022.132437.
- Botelho Junior, A.B.; Espinosa, D.C.R.; Vaughan, J.; Tenório, J.A.S. Recovery of scandium from various sources: A critical review of the state of the art and future prospects. Miner. Eng. 2021, 172, 107148. https://doi.org/10.1016/j.mineng.2021.107148.
- Tanida, E.; Usuda, K.; Kono, K.; Kawano, A.; Tsuji, H.; Imanishi, M.; Suzuki, S.; Ohnishi, K.; Yamamoto, K. Urinary scandium as predictor of exposure: Effects of scandium chloride hexahydrate on renal function in rats. Biol. Trace Elem. Res. 2009, 130, 273–282. https://doi.org/10.1007/s12011-009-8337-6.
- Deng, H.-H.; Huang, K.-Y.; Fang, Q.-H.; Lv, Y.-P.; He, S.-B.; Peng, H.-P.; Xia, X.-H.; Chen, W. Schiff base and Lewis acid-base interaction-regulated aggregation/dispersion of gold nanoparticles for colorimetric recognition of rare-earth Sc3+ ions. Sens. Actuators B Chem. 2020, 311, 127925. https://doi.org/10.1016/j.snb.2020.127925.
- Barber, T.R.; Lutes, C.C.; Doorn, M.R.J.; Fuchsman, P.C.; Timmenga, H.J.; Crouch, R.L. Aquatic ecological risks due to cyanide releases from biomass burning. Chemosphere 2003, 50, 343–348. doi: 10.1016/S0045-6535(02)00532-5
- Jaszczak, E.; Polkowska, Z.; Narkowicz, S.; Namiesnik, J. Cyanides in the environment-analysis-problems and challenges. Environ. Sci. Pollut. Res. 2017, 24, 15929–15948. https://doi.org/10.1007/s11356-017-9081-7.
- Cheng, C.; Chen, H.-Y.; Wu, C.-S.; Meena, J.S.; Simon, T.; Ko, F.-H. A highly sensitive and selective cyanide detection using a gold nanoparticle-based dual fluorescence–colorimetric sensor with a wide concentration range. Sens. Actuators B Chem. 2016, 227, 283–290. https://doi.org/10.1016/j.snb.2015.12.057.
- Camargo, J.A.; Alonso, A. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environ. Int 2006, 32, 831–849. https://doi.org/10.1016/j.envint.2006.05.002.
- Picetti, R.; Deeney, M.; Pastorino, S.; Miller, M.R.; Shah, A.; Leon, D.A.; Dangour, A.D.; Green, R. Nitrate and nitrite contamination in drinking water and cancer risk: A systematic review with meta-analysis. Environ. Res. 2022, 210, 112988. https://doi.org/10.1016/j.envres.2022.112988.
- Sener, G.; Uzun, L.; Denizli, A. Colorimetric sensor array based on gold nanoparticles and amino acids for identification of toxic metal ions in water. ACSAppl. Mater. Interfaces 2014, 6, 18395–18400. https://doi.org/10.1021/am5071283.
- Li, X.; Li, S.; Liu, Q.; Chen, Z. Electronic-Tongue Colorimetric-Sensor Array for Discrimination and Quantitation of Metal Ions Based on Gold-Nanoparticle Aggregation. Anal. Chem. 2019, 91, 6315–6320. https://doi.org/10.1021/acs.analchem.9b01139.
- Qiu, J.; Li, Z.; Miao, L.; Wang, H.; Zhang, Y.; Wu, S.; Zhang, Y.; Li, X.; Wu, A. Colorimetric detection of Ba2+, Cd2+ and Pb2+ based on a multifunctionalized Au NP sensor. Analyst 2019, 144, 5081–5089. https://doi.org/10.1039/c9an00836e.
- Guo, Y.; Wang, Z.; Qu, W.; Shao, H.; Jiang, X. Colorimetric detection of mercury, lead and copper ions simultaneously using protein-functionalized gold nanoparticles. Biosens. Bioelectron. 2011, 26, 4064–4069. https://doi.org/10.1016/j.bios.2011.03.033.
- Zhang, W.; Jiang, F.; Ou, J. Global pesticide consumption and pollution: With China as a focus. Proc. Int. Acad. Ecol. Environ. Sci. 2011, 1, 125–144.
- Jeyaseelan, A.; Murugesan, K.; Thayanithi, S.; Palanisamy, S.B. A review of the impact of herbicides and insecticides on the microbial communities. Environ. Res. 2024, 245, 118020. https://doi.org/10.1016/j.envres.2023.118020.
- Kim, K.H.; Kabir, E.; Jahan, S.A. Exposure to pesticides and the associated human health effects. Sci Total Environ. 2017, 575, 525–535. https://doi.org/10.1016/j.scitotenv.2016.09.009.
- Fahimi-Kashani, N.; Hormozi-Nezhad, M.R. Gold-Nanoparticle-Based Colorimetric Sensor Array for Discrimination of Organophosphate Pesticides. Anal. Chem. 2016, 88, 8099–8106. https://doi.org/10.1021/acs.analchem.6b01616.
- Chen, N.; Liu, H.; Zhang, Y.; Zhou, Z.; Fan, W.; Yu, G.; Shen, Z.; Wu, A. A colorimetric sensor based on citrate-stabilized AuNPs for rapid pesticide residue detection of terbuthylazine and dimethoate. Sens. Actuators B Chem. 2018, 255, 3093–3101. https://doi.org/10.1016/j.snb.2017.09.134.
- Zhou, Y.; Li, C.; Liu, R.; Chen, Z.; Li, L.; Li, W.; He, Y.; Yuan, L. Label-Free Colorimetric Detection of Prothioconazole Using Gold Nanoparticles Based on One-Step Reaction. ACS Biomater. Sci. Eng. 2020, 6, 2805–2811. https://doi.org/10.1021/acsbiomaterials.0c00208.
- Liu, K.; Jin, Y.; Wu, Y.; Liang, J. Simple and rapid colorimetric visualization of tetramethylthiuram disulfide (thiram) sensing based on anti-aggregation of gold nanoparticles. Food Chem. 2022, 384, 132223. https://doi.org/10.1016/j.foodchem.2022.132223.
- Barbosa, J.; Cruz, C.; Martins, J.; Silva, J.M.; Neves, C.; Alves, C.; Ramos, F.; Da Silveira, M.I. Food poisoning by clenbuterol in Portugal. Food Addit Contam. 2005, 22, 563–566. https://doi.org/10.1080/02652030500135102.
- Kumari, S.; Pal, B.; Sahu, S.K.; Prabhakar, P.K.; Tewari, D. Adverse events ofclenbuterol among athletes: A systematic review of case reports and case series. Int. J. Leg. Med. 2023, 137, 1023–1037. https://doi.org/10.1007/s00414-023-02996-1.
- Kang, J.; Zhang, Y.; Li, X.; Miao, L.; Wu, A. A Rapid Colorimetric Sensor ofClenbuterol Based on Cysteamine-Modified Gold Nanoparticles. ACSAppl. Mater. Interfaces 2016, 8, 1–5. https://doi.org/10.1021/acsami.5b09079.
- Martinez, J.L. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ. Pollut 2009, 157, 2893–2902. https://doi.org/10.1016/j.envpol.2009.05.051.
- Polianciuc, S.I.; Gurzau, A.E.; Kiss, B.; Stefan, M.G.; Loghin, F. Antibiotics in the environment: Causes and consequences. Med. Pharm. Rep. 2020, 93, 231–240. https://doi.org/10.15386/mpr-1742.
- Gothwal, R.; Shashidhar, T. Antibiotic Pollution in the Environment: A Review. CLEAN-Soil Air Water 2014, 43, 479–489. https://doi.org/10.1002/clen.201300989.
- Qin, L.; Zeng, G.; Lai, C.; Huang, D.; Zhang, C.; Xu, P.; Hu, T.; Liu, X.; Cheng, M.; Liu, Y.; et al. A visual application of gold nanoparticles: Simple, reliable and sensitive detection of kanamycin based on hydrogen-bonding recognition. Sens. Actuators B Chem. 2017, 243, 946–954. https://doi.org/10.1016/j.snb.2016.12.086.
- Wu, Y.Y.; Huang, P.; Wu, F.Y. A label-free colorimetric aptasensor based on controllable aggregation ofAuNPs for the detection of multiplex antibiotics. Food Chem. 2020, 304, 125377. https://doi.org/10.1016/j.foodchem.2019.125377.
- Zhang, S.; Du, X.; Liu, H.; Losiewic, M.D.; Chen, X.; Ma, Y.; Wang, R.; Tian, Z.; Shi, L.; Guo, H.; et al. The latest advances in the reproductive toxicity of microcystin-LR. Environ. Res. 2021, 192, 110254. https://doi.org/10.1016/j.envres.2020.110254.
- Li, Y.; Wang, Z.; Beier, R.C.; Shen, J.; De Smet, D.; De Saeger, S.; Zhang, S. T-2 toxin, a trichothecene mycotoxin: Review of toxicity, metabolism, and analytical methods. J. Agric. Food Chem. 2011, 59, 3441–3453. https://doi.org/10.1021/jf200767q.
- Rochester, J.R. Bisphenol A and human health: A review of the literature. Reprod. Toxicol. 2013, 42, 132–155. https://doi.org/10.1016/j.reprotox.2013.08.008.
- Li, X.; Cheng, R.; Shi, H.; Tang, B.; Xiao, H.; Zhao, G. A simple highly sensitive and selective aptamer-based colorimetric sensor for environmental toxins microcystin-LR in water samples. J. Hazard. Mater. 2016, 304, 474–480. https://doi.org/10.1016/j.jhazmat.2015.11.016.
- Zhang, W.; Wang, Y.; Nan, M.; Li, Y.; Yun, J.; Wang, Y.; Bi, Y. Novel colorimetric aptasensor based on unmodified gold nanoparticle and ssDNA for rapid and sensitive detection of T-2 toxin. Food Chem. 2021, 348, 129128. https://doi.org/10.1016/j.foodchem.2021.129128.
- Lee, E.H.; Lee, S.K.; Kim, M.J.; Lee, S.W. Simple and rapid detection of bisphenol A using a gold nanoparticle-based colorimetric aptasensor. Food Chem. 2019, 287, 205–213. https://doi.org/10.1016/j.foodchem.2019.02.079.
- Becalski, A.; Lau, B.P.-Y.; Lewis, D.; Seaman, S.W. Semicarbazide Formation in Azodicarbonamide-Treated Flour: A Model Study. J. Agric. Food Chem. 2004, 52, 5730-5734. doi: 10.1021/jf0495385
- Chen, Z.; Chen, L.; Lin, L.; Wu, Y.; Fu, F. A Colorimetric Sensor for the Visual Detection of Azodicarbonamide in Flour Based on Azodicarbonamide-Induced Anti-Aggregation of Gold Nanoparticles. ACS Sens. 2018, 3, 2145–2151. https://doi.org/10.1021/acssensors.8b00705.
- Bourdin, D.; Mocho, P.; Desauziers, V.; Plaisance, H. Formaldehyde emission behavior of building materials: On-site measurements and modeling approach to predict indoor air pollution. J. Hazard. Mater. 2014, 280, 164–173. https://doi.org/10.1016/j.jhazmat.2014.07.065.
- Tang, X.; Bai, Y.; Duong, A.; Smith, M.T.; Li, L.; Zhang, L. Formaldehyde in China: Production, consumption, exposure levels, and health effects. Environ. Int 2009, 35, 1210–1224. https://doi.org/10.1016/j.envint.2009.06.002.
- Almaquer, F.E.P.; Ricacho, J.S.Y.; Ronquillo, R.L.G. Simple and rapid colorimetric sensing of Ni(II) ions in tap water based on aggregation of citrate-stabilized silver nanoparticles. Sustain. Environ. Res. 2019, 29, 23. https://doi.org/10.1186/s42834-019-0026-3.
- Li, H.; Cui, Z.; Han, C. Glutathione-stabilized silver nanoparticles as colorimetric sensor for Ni2+ ion. Sens. Actuators B Chem. 2009, 143, 87–92. https://doi.org/10.1016/j.snb.2009.09.013.
- Karthiga, D.; Anthony, S.P. Selective colorimetric sensing of toxic metal cations by green synthesized silver nanoparticles over a wide pH range. RSC Adv. 2013, 3, 16765–16774. https://doi.org/10.1039/c3ra42308e.
- Soomro, R.A.; Nafady, A.; Sirajuddin; Memon, N.; Sherazi, T.H.; Kalwar, N.H. L-cysteine protected copper nanoparticles as colorimetric sensor for mercuric ions. Talanta 2014, 130, 415–422. https://doi.org/10.1016/j.talanta.2014.07.023.
- Li, Q.; Wu, F.; Mao, M.; Ji, X.; Wei, L.; Li, J.; Ma, L. A dual-mode colorimetric sensor based on copper nanoparticles for the detection of mercury-(ii) ions. Anal. Methods 2019, 11, 4014–4021. https://doi.org/10.1039/c9ay00843h.
- Madhupriya, S.; Elango, K.P. Highly selective colorimetric sensing of Cu(II) ions in aqueous solution via modulation of intramolecular charge transfer transition of aminonaphthoquinone chemosensor. Spectrochim Acta A Mol Biomol Spectrosc 2012, 97, 100–104. https://doi.org/10.1016/j.saa.2012.05.044.
- Petdum, A.; Panchan, W.; Sirirak, J.; Promarak, V.; Sooksimuang, T.; Wanichacheva, N. Colorimetric and fluorescent sensing of a new FRET system via [5]helicene and rhodamine 6G for Hg2+ detection. New J. Chem. 2018, 42, 1396–1402. https://doi.org/10.1039/c7nj04129b.
- Chen, L.; Tian, X.; Xia, D.; Nie, Y.; Lu, L.; Yang, C.; Zhou, Z. Novel Colorimetric Method for Simultaneous Detection and Identification of Multimetal Ions in Water: Sensitivity, Selectivity, and Recognition Mechanism. ACS Omega 2019, 4, 5915–5922. https://doi.org/10.1021/acsomega.9b00312.
- Lu, F.; Zhou, Y.-h.; Wu, L.-h.; Qian, J.; Cao, S.; Deng, Y.-f.; Chen, Y. Highly Fluorescent Nitrogen-Doped Graphene Quantum Dots’ Synthesis and Their Applications as Fe(III) Ions Sensor. Int. J. Opt. 2019, 2019, 8724320. https://doi.org/10.1155/2019/8724320.
- Li, F.; Hong, Y.-S.; Zuo, K.-X.; Sun, Q.; Gao, E.-Q. Highly selective fluorescent probe for Hg2+ and MnO4- by the two- fold interpenetrating metal-organic framework with nitro functionalized linkers. J. Solid State Chem. 2019, 270, 509–515. https://doi.org/10.1016/j.jssc.2018.12.025.