Downloads
Download

This work is licensed under a Creative Commons Attribution 4.0 International License.
The global shift toward renewable and green energy highlights the critical role of green energy materials in achieving sustainability goals. This paper focuses on how these materials contribute to the three pillars of sustainability: environmental, economic, and social, in alignment with the United Nations Sustainable Development Goals (SDGs). Green energy materials, including photovoltaic materials, thermoelectric materials, electrochemical storage materials, and other materials appear to play a vital role in meeting these pillars. It is found that using these materials, green and renewable energy is projected to contribute up to 55% of global electricity use by 2030. Green energy materials have achieved the three pillars of sustainability. Environmentally, they help to mitigate climate change, reduce greenhouse gas emissions, and protect ecosystems. Economically, these materials foster innovation, create jobs and opportunities, and stimulate economic growth within the green energy sector. Socially, they improve the living standards by providing access to clean energy, reducing health risks, while supporting the development of sustainable cities and communities. By aligning with sustainable development goals, such as clean water, climate action, economic growth, and affordable energy, green energy materials are necessary for achieving a sustainable future. Despite these advances, widespread adoption remains hindered by economic, policy, and technological barriers. Therefore, there is a need for integrative policies, improved lifecycle analysis, and inclusive access to green energy technologies to ensure equitable transition and global sustainability.
Keywords:
Energy materials Green energy materials Green materials Sustainability Sustainable Development Goals (SDGs)References
- Madhu, R.; Dalapati, G.K.; Wong, T.K.S.; et al. Clean energy for sustainable development: Importance of new materials. In Sulfide and Selenide Based Materials for Emerging Applications; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–15. doi: 10.1016/B978-0-323-99860-4.00018-6
- International Energy Agency. Energy and Climate Change: World Energy Outlook Special Report; International Energy Agency: Paris, France, 2015.
- Abdul Latif, S.N.; Chiong, M.S.; Rajoo, S.; et al. The trend and status of energy resources and greenhouse gas emissions in the Malaysia power generation mix. Energies 2021, 14, 2200. doi: 10.3390/en14082200
- Aktar, M.A.; Harun, M.B.; Alam, M.M. Green energy and sustainable development. In Affordable and Clean Energy; Springer: Cham, Switzerland, 2020; pp. 1–11. doi: 10.1007/978-3-319-71057-0_47-1
- Hoel, M.; Kverndokk, S. Depletion of fossil fuels and the impacts of global warming. Resour. Energy Econ. 1996, 18, 115–136. doi: 10.1016/0928-7655(96)00005-X
- Bhatt, R.P. Achievement of SDGS globally in biodiversity conservation and reduction of greenhouse gas emissions by using green energy and maintaining forest cover. GSC Adv. Res. Rev. 2023, 17, 1–21. doi: 10.30574/gscarr.2023.17.3.0421
- Androniceanu, A.; Sabie, O.M. Overview of green energy as a real strategic option for sustainable development. Energies 2022, 15, 8573. doi: 10.3390/en15228573
- United Nations. Sustainability. Available online: https://www.un.org/en/academic-impact/sustainability (accessed on 10 October 2024).
- Kaygusuz, K. Energy for sustainable development: A case of developing countries. Renew. Sustain. Energy Rev. 2012, 16, 1116–1126. doi: 10.1016/j.rser.2011.11.013
- Papadis, E.; Tsatsaronis, G. Challenges in the decarbonization of the energy sector. Energy 2020, 205, 118025. doi: 10.1016/j.energy.2020.118025
- Chong, C.T.; Van Fan, Y.; Lee, C.T.; Klemeš, J.J. Post COVID-19 ENERGY sustainability and carbon emissions neutrality. Energy 2022, 241, 122801. doi: 10.1016/j.energy.2021.122801
- European Parliament. Green Deal: Key to a Climate-Neutral and Sustainable EU. Available online: https://www.europarl.europa.eu/topics/en/article/20200618STO81513/green-deal-key-to-a-climate-neutral-and-sustainable-eu (accessed on 1 April 2025).
- Obaideen, K.; Olabi, A.G.; Al Swailmeen, Y.; et al. Solar energy: Applications, trends analysis, bibliometric analysis and research contribution to sustainable development goals (SDGs). Sustainability 2023, 15, 1418. doi: 10.3390/su15021418
- Gedam, R.S.; Kalyani, N.T.; Dhoble, S.J. Energy materials: Fundamental physics and latest advances in relevant technology. In Energy Materials; Elsevier: Amsterdam, The Netherlands, 2021; pp. 3–26. doi: 10.1016/B978-0-12-823710-6.00010-8
- Musilek, P.; Prauzek, M.; Krömer, P.; Rodway, J.; Bartoň, T. Intelligent energy management for environmental monitoring systems. In Smart Sensors Networks; Elsevier: Amsterdam, The Netherlands, 2017; pp. 67–94. doi: 10.1016/B978-0-12-809859-2.00005-X
- Kalyani, N.T.; Dhoble, S.J. Energy materials: Applications and propelling opportunities. In Energy Materials; Elsevier: Amsterdam, The Netherlands, 2021; pp. 567–580. doi: 10.1016/B978-0-12-823710-6.00011-X
- Midilli, A.; Dincer, I.; Ay, M. Green energy strategies for sustainable development. Energy Policy 2006, 34, 3623–3633. doi: 10.1016/j.enpol.2005.08.003
- Duehnen, S.; Betz, J.; Kolek, M.; Schmuch, R.; Winter, M.; Placke, T. Toward green battery cells: Perspective on materials and technologies. Small Methods 2020, 4, 2000039. doi: 10.1002/smtd.202000039
- Anastas, P.T. Introduction: Green chemistry. Chem. Rev. 2007, 6, 2167–2168. doi: 10.1021/cr0783784
- Horváth, I.T. Introduction: Sustainable chemistry. 2018, 118, 369–371. doi: 10.1021/acs.chemrev.7b00721
- Saleh, H.E.-D.M.; Koller, M. Introductory chapter: Principles of green chemistry. In Green Chemistry; IntechOpen: London, UK, 2018. doi: 10.5772/intechopen.71191
- Goel, S.; Munjal, M.; Sharma, R.K.; et al. Advanced applications of green materials in supercapacitors. In Applications of Advanced Green Materials; Elsevier: Amsterdam, The Netherlands, 2021; pp. 339–371. doi: 10.1016/B978-0-12-820484-9.00014-3
- Bontempi, E.; Sorrentino, G.P.; Zanoletti, A.; et al. Sustainable materials and their contribution to the sustainable development goals (SDGs): A critical review based on an Italian example. Molecules 2021, 26, 1407. doi: 10.3390/molecules26051407
- Zhao, Y.; Liu, L.; Yu, M. Comparison and analysis of carbon emissions of traditional, prefabricated, and green material buildings in materialization stage. J. Clean. Prod. 2023, 406, 137152. doi: 10.1016/j.jclepro.2023.137152
- Nandy, S.; Fortunato, E.; Martins, R. Green economy and waste management: An inevitable plan for materials science. Prog. Nat. Sci. Mater. Int. 2022, 32, 1–9. doi: 10.1016/j.pnsc.2022.01.001
- Sarkar, B.; Ullah, M.; Sarkar, M. Environmental and economic sustainability through innovative green products by remanufacturing. J. Clean. Prod. 2022, 332, 129813. doi: 10.1016/j.jclepro.2021.129813
- Parida, B.; Iniyan, S.; Goic, R. A review of solar photovoltaic technologies. Renew. Sustain. Energy Rev. 2011, 15, 1625–1636. doi: 10.1016/j.rser.2010.11.032
- Obaideen, K.; AlMallahi, M.N.; Alami, A.H.; et al. On the contribution of solar energy to sustainable developments goals: Case study on Mohammed bin Rashid Al Maktoum Solar Park. Int. J. Thermofluids 2021, 12, 100123. doi: 10.1016/j.ijft.2021.100123
- Chowdhury, M.S.; Rahman, K.S.; Chowdhury, T.; et al. An overview of solar photovoltaic panels’ end-of-life material recycling. Energy Strategy Rev. 2020, 27, 100431. doi: 10.1016/j.esr.2019.100431
- Ivanko, A. Solar PV Waste Management in the Context of Sustainable Development Goals. Master’s Thesis, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine, 2021.
- Irena, I.P. End-of-Life Management: Solar Photovoltaic Panels; USDOE Office of Energy Efficiency and Renewable Energy (EERE): Washington, DC, USA, 2016.
- Ghosh, S.; Yadav, R. Future of photovoltaic technologies: A comprehensive review. Sustain. Energy Technol. Assess. 2021, 47, 101410. doi: 10.1016/j.seta.2021.101410
- Rajvikram, M.; Leoponraj, S. A method to attain power optimality and efficiency in solar panel. Beni-Suef Univ. J. Basic Appl. Sci. 2018, 7, 705–708. doi: 10.1016/j.bjbas.2018.08.004
- Dada, M.; Popoola, P. Recent advances in solar photovoltaic materials and systems for energy storage applications: A review. Beni-Suef Univ. J. Basic Appl. Sci. 2023, 12, 1–15. doi: 10.1186/s43088-023-00405-5
- Ajayan, J.; Nirmal, D.; Mohankumar, P.; et al. A review of photovoltaic performance of organic/inorganic solar cells for future renewable and sustainable energy technologies. Superlattices Microstruct. 2020, 143, 106549. doi: 10.1016/j.spmi.2020.106549
- Kumari, N.; Singh, S.K.; Kumar, S. A comparative study of different materials used for solar photovoltaics technology. Mater. Today Proc. 2022, 66, 3522–3528. doi: 10.1016/j.matpr.2022.06.403
- Goetzberger, A.; Hebling, C.; Schock, H.-W. Photovoltaic materials, history, status and outlook. Mater. Sci. Eng. R Rep. 2003, 40, 1–46. doi: 10.1016/S0927-796X(02)00092-X
- Ehrling, S.; Reynolds, E.M.; Bon, V.; et al. Adaptive response of a metal–organic framework through reversible disorder–disorder transitions. Nat. Chem. 2021, 13, 568–574. doi: 10.1038/s41557-021-00684-4
- Stuckelberger, M.; Biron, R.; Wyrsch, N.; et al. Progress in solar cells from hydrogenated amorphous silicon. Renew. Sustain. Energy Rev. 2017, 76, 1497–1523. doi: 10.1016/j.rser.2016.11.190
- Cherradi, N. Solar PV Technologies What’s Next; Becquerel Institute: Brussels, Belgium, 2019.
- Poortmans, J.; Arkhipov, V. Thin Film Solar Cells: Fabrication, Characterization and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2006; Volume 18. doi: 10.1002/0470091282
- Sharma, S.; Jain, K.K.; Sharma, A. Solar cells: In research and applications—A review. Mater. Sci. Appl. 2015, 6, 1145–1155. doi: 10.4236/msa.2015.612113
- Younas, T.; Khan, U.A.; Zaidi, S.; et al. Increasing Efficiency of Solar Panels via Photovoltaic Materials. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2022; p. 012005. doi: 10.1088/1755-1315/1048/1/012005
- Chander, S.; Tripathi, S.K.; Kaur, I.; et al. Nontoxic and earth-abundant Cu2ZnSnS4 (CZTS) thin film solar cells: A review on high throughput processed methods. Mater. Today Sustain. 2023, 25, 100662. doi: 10.1016/j.mtsust.2023.100662
- Green, M.A.; Dunlop, E.D.; Yoshita, M.; et al. Solar cell efficiency tables (Version 63). Prog. Photovolt. Res. Appl. 2023, 1–16. https://doi.org/10.1002/pip.3750.
- Green, M.A.; Ho-Baillie, A.; Snaith, H.J. The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506–514. doi: 10.1038/nphoton.2014.134
- Bahutair, W.N.; Alhajar, A.; Al Othman, A.; et al. The role of MXenes and MXene composites in enhancing dye-sensitized solar cells characteristics. Process Saf. Environ. Prot. 2024, 191, 490–504. doi: 10.1016/j.psep.2024.09.008
- Maisch, P.; Lucera, L.; Brabec, C.J.; et al. Flexible Carbon‐based Electronics: Flexible Solar Cells. Flex. Carbon‐Based Electron. 2018, 51–69. doi: 10.1002/9783527804894.ch3
- Fallahpour, A.H.; Gentilini, D.; Gagliardi, A.; et al. Systematic study of the PCE and device operation of organic tandem solar cells. IEEE J. Photovolt. 2015, 6, 202–210. doi: 10.1109/JPHOTOV.2015.2486382
- Li, S.; Liu, X.; Zhang, X.; et al. Harvesting Thermal Energy through Pyroelectric and Thermoelectric Nanomaterials for Catalytic Applications. Catalysts 2024, 14, 159. doi: 10.3390/catal14030159
- Tzounis, L. Synthesis and processing of thermoelectric nanomaterials, nanocomposites, and devices. In Nanomaterials Synthesis; Elsevier: Amsterdam, The Netherlands, 2019; pp. 295–336. doi: 10.1016/B978-0-12-815751-0.00009-2
- Jia, N.; Cao, J.; Tan, X.Y.; et al. Thermoelectric materials and transport physics. Mater. Today Phys. 2021, 21, 100519. doi: 10.1016/j.mtphys.2021.100519
- Zhang, Y.; Zhang, Q.; Chen, G. Carbon and carbon composites for thermoelectric applications. Carbon Energy 2020, 2, 408–436. doi: 10.1002/cey2.68
- Zhu, T.; Liu, Y.; Fu, C.; et al. Compromise and synergy in high‐efficiency thermoelectric materials. Adv. Mater. 2017, 29, 1605884. doi: 10.1002/adma.201702816
- Chen, Z.-G.; Shi, X.; Zhao, L.-D.; et al. High-performance SnSe thermoelectric materials: Progress and future challenge. Prog. Mater. Sci. 2018, 97, 283–346. doi: 10.1016/j.pmatsci.2018.04.005
- Zhao, L.-D.; Lo, S.-H.; Zhang, Y.; et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 2014, 508, 373–377. doi: 10.1038/nature13184
- Gao, C.; Chen, G. Conducting polymer/carbon particle thermoelectric composites: Emerging green energy materials. Compos. Sci. Technol. 2016, 124, 52–70. doi: 10.1016/j.compscitech.2016.01.014
- Wan, C.; Gu, X.; Dang, F.; et al. Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS 2. Nat. Mater. 2015, 14, 622–627. doi: 10.1038/nmat4251
- Zhang, Y.; Heo, Y.-J.; Park, M.; et al. Recent advances in organic thermoelectric materials: Principle mechanisms and emerging carbon-based green energy materials. Polymers 2019, 11, 167. doi: 10.3390/polym11010167
- Di, C.; Xu, W.; Zhu, D. Organic thermoelectrics for green energy. Natl. Sci. Rev. 2016, 3, 269–271. doi: 10.1093/nsr/nww040
- Caballero‐Calero, O.; Ares, J.R.; Martín‐González, M. Environmentally friendly thermoelectric materials: High performance from inorganic components with low toxicity and abundance in the earth. Adv. Sustain. Syst. 2021, 5, 2100095. doi: 10.1002/adsu.202100095
- Yu, C.; Zhang, G.; Zhang, Y.-W.; et al. Strain engineering on the thermal conductivity and heat flux of thermoelectric Bi2Te3 nanofilm. Nano Energy 2015, 17, 104–110. doi: 10.1016/j.nanoen.2015.08.003
- Massetti, M.; Jiao, F.; Ferguson, A.J.; et al. Unconventional thermoelectric materials for energy harvesting and sensing applications. Chem. Rev. 2021, 121, 12465–12547. doi: 10.1021/acs.chemrev.1c00218
- Kawamoto, M.; He, P.; Ito, Y. Green processing of carbon nanomaterials. Adv. Mater. 2017, 29, 1602423. doi: 10.1002/adma.201602423
- Yuan, Y.; Lu, J. Demanding energy from carbon. Carbon Energy 2019, 1, 8–12. doi: 10.1002/cey2.12
- Wang, H.; Cui, Y. Nanodiamonds for energy. Carbon Energy 2019, 1, 13–18. doi: 10.1002/cey2.9
- Balandin, A.A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011, 10, 569–581. doi: 10.1038/nmat3064
- Abouricha, S.; Aziam, H.; Noukrati, H.; et al. Biopolymers‐Based Proton Exchange Membranes For Fuel Cell Applications: A Comprehensive Review. ChemElectroChem 2024, 11, e202300648. doi: 10.1002/celc.202300648
- Pedram, S.; Batool, M.; Yapp, K.; et al. A review on bioinspired proton exchange membrane fuel cell: Design and materials. Adv. Energy Sustain. Res. 2021, 2, 2000092. doi: 10.1002/aesr.202000092
- Frey, T.; Linardi, M. Effects of membrane electrode assembly preparation on the polymer electrolyte membrane fuel cell performance. Electrochim. Acta 2004, 50, 99–105. doi: 10.1016/j.electacta.2004.07.017
- Gouda, M.H.; Elnouby, M.; Aziz, A.N.; et al. Green and low-cost membrane electrode assembly for proton exchange membrane fuel cells: Effect of double-layer electrodes and gas diffusion layer. Front. Mater. 2020, 6, 337. doi: 10.3389/fmats.2019.00337
- Gouda, M.H.; Gouveia, W.; Afonso, M.L.; et al. Poly (vinyl alcohol)-based crosslinked ternary polymer blend doped with sulfonated graphene oxide as a sustainable composite membrane for direct borohydride fuel cells. J. Power Sources 2019, 432, 92–101. doi: 10.1016/j.jpowsour.2019.05.078
- Baroutaji, A.; Arjunan, A.; Robinson, J.; et al. PEMFC poly-generation systems: Developments, merits, and challenges. Sustainability 2021, 13, 11696. doi: 10.3390/su132111696
- Liu, M.; Guo, X.; Hu, L.; et al. Fe3O4/Fe3C@ Nitrogen‐Doped Carbon for Enhancing Oxygen Reduction Reaction. ChemNanoMat 2019, 5, 187–193. doi: 10.1002/cnma.201800432
- Lucia, U. Overview on fuel cells. Renew. Sustain. Energy Rev. 2014, 30, 164–169. doi: 10.1016/j.rser.2013.09.025
- Elkafas, A.G.; Rivarolo, M.; Gadducci, E.; et al. Fuel cell systems for maritime: A review of research development, commercial products, applications, and perspectives. Processes 2022, 11, 97. doi: 10.3390/pr11010097
- Sajid, A.; Pervaiz, E.; Ali, H.; et al. A perspective on development of fuel cell materials: Electrodes and electrolyte. Int. J. Energy Res. 2022, 46, 6953–6988. doi: 10.1002/er.7635
- Alinejad, Z.; Parham, N.; Tawalbeh, M.; et al. Progress in green hydrogen production and innovative materials for fuel cells: A pathway towards sustainable energy solutions. Int. J. Hydrogen Energy 2024, 140, 1078–1094. doi: 10.1016/j.ijhydene.2024.09.153
- Ali, A.A.; Al-Othman, A.; Tawalbeh, M. Exploring natural polymers for the development of proton exchange membranes in fuel cells. Process Saf. Environ. Prot. 2024, 189, 1379–1401. doi: 10.1016/j.psep.2024.06.130
- Mahmoud, M.; Ramadan, M.; Abdelkareem, M.A.; Olabi, A.G. Introduction and definition of wind energy. In Renewable Energy-Volume 1: Solar, Wind, and Hydropower; Elsevier: Amsterdam, The Netherlands, 2023; pp. 299–314. doi: 10.1016/B978-0-323-99568-9.00016-9
- Olabi, A.G.; Wilberforce, T.; Elsaid, K.; et al. A review on failure modes of wind turbine components. Energies 2021, 14, 5241. doi: 10.3390/en14175241
- El Mouhsine, S.; Oukassou, K.; Ichenial, M.M.; et al. Aerodynamics and structural analysis of wind turbine blade. Procedia Manuf. 2018, 22, 747–756. doi: 10.1016/j.promfg.2018.03.107
- Abrahamsen, A.B.; Natarajan, A.; Kitzing, L.; et al. Towards sustainable wind energy. In DTU International Energy Report 2021: Perspectives on Wind Energy; DTU Wind Energy: Roskilde, Denmark, 2021; pp. 144–150.
- Bashir, M.B.A. Principle parameters and environmental impacts that affect the performance of wind turbine: An overview. Arab. J. Sci. Eng. 2022, 47, 7891–7909. doi: 10.1007/s13369-021-06357-1
- Karuppannan Gopalraj, S.; Kärki, T. A review on the recycling of waste carbon fibre/glass fibre-reinforced composites: Fibre recovery, properties and life-cycle analysis. SN Appl. Sci. 2020, 2, 433. doi: 10.1007/s42452-020-2195-4
- Mdallal, A.; Mahmoud, M.; Abdelkareem, M.A.; et al. Green Materials in Wind Turbines. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, Netherlands, 2023.
- Thomas, L.; Ramachandra, M. Advanced materials for wind turbine blade-A Review. Mater. Today Proc. 2018, 5, 2635–2640. doi: 10.1016/j.matpr.2018.01.043
- Mishnaevsky Jr, L.; Branner, K.; Petersen, H.N.; et al. Materials for wind turbine blades: An overview. Materials 2017, 10, 1285. doi: 10.3390/ma10111285
- Leon, M.J. Recycling of wind turbine blades: Recent developments. Curr. Opin. Green Sustain. Chem. 2023, 39, 100746. doi: 10.1016/j.cogsc.2022.100746
- Chen, J.; Wang, J.; Ni, A. Recycling and reuse of composite materials for wind turbine blades: An overview. J. Reinf. Plast. Compos. 2019, 38, 567–577. doi: 10.1177/0731684419833470
- Rathore, N.; Panwar, N.L. Environmental impact and waste recycling technologies for modern wind turbines: An overview. Waste Manag. Res. 2023, 41, 744–759. doi: 10.1177/0734242X221135527
- Khan, K.; Tareen, A.K.; Aslam, M.; et al. Going green with batteries and supercapacitor: Two dimensional materials and their nanocomposites based energy storage applications. Prog. Solid State Chem. 2020, 58, 100254. doi: 10.1016/j.progsolidstchem.2019.100254
- Tawalbeh, M.; Ali, A.; Aljawrneh, B.; et al. Progress in safe nano-structured electrolytes for sodium ion batteries: A comprehensive review. Nano-Struct. Nano-Objects 2024, 39, 101311. doi: 10.1016/j.nanoso.2024.101311
- Saikia, B.K.; Benoy, S.M.; Bora, M.; et al. A brief review on supercapacitor energy storage devices and utilization of natural carbon resources as their electrode materials. Fuel 2020, 282, 118796. doi: 10.1016/j.fuel.2020.118796
- Sharma, K.; Arora, A.; Tripathi, S.K. Review of supercapacitors: Materials and devices. J. Energy Storage 2019, 21, 801–825. doi: 10.1016/j.est.2019.01.010
- Xie, J.; Yang, P.; Wang, Y.; et al. Puzzles and confusions in supercapacitor and battery: Theory and solutions. J. Power Sources 2018, 401, 213–223. doi: 10.1016/j.jpowsour.2018.08.090
- Wayu, M. Manganese oxide carbon-based nanocomposite in energy storage applications. Solids 2021, 2, 232–248. doi: 10.3390/solids2020015
- Manjakkal, L.; Jain, A.; Nandy, S.; et al. Sustainable electrochemical energy storage devices using natural bast fibres. Chem. Eng. J. 2023, 465, 142845. doi: 10.1016/j.cej.2023.142845
- Bhattacharjya, D.; Yu, J.-S. Activated carbon made from cow dung as electrode material for electrochemical double layer capacitor. J. Power Sources 2014, 262, 224–231. doi: 10.1016/j.jpowsour.2014.03.143
- Debnath, S. Flax fibre extraction to textiles and sustainability: A holistic approach. In Sustainable Fashion and Textiles in Latin America; Springer: Singapore, 2021; pp. 73–85. doi: 10.1007/978-981-16-1850-5_4
- Jakubec, P.; Bartusek, S.; Dvořáček, J.J.; et al. Flax-derived carbon: A highly durable electrode material for electrochemical double-layer supercapacitors. Nanomaterials 2021, 11, 2229. doi: 10.3390/nano11092229
- Hasan, K.M.F.; Horváth, P.G.; Alpár, T. Potential natural fiber polymeric nanobiocomposites: A review. Polymers 2020, 12, 1072. doi: 10.3390/polym12051072
- Keya, K.N.; Kona, N.A.; Koly, F.A.; et al. Natural fiber reinforced polymer composites: History, types, advantages and applications. Mater. Eng. Res. 2019, 1, 69–85. doi: 10.25082/MER.2019.02.006
- Cheng, X.B.; Liu, H.; Yuan, H.; et al. A perspective on sustainable energy materials for lithium batteries. SusMat 2021, 1, 38–50. doi: 10.1002/sus2.4
- Barke, A.; Cistjakov, W.; Steckermeier, D.; et al. Green batteries for clean skies: Sustainability assessment of lithium‐sulfur all‐solid‐state batteries for electric aircraft. J. Ind. Ecol. 2023, 27, 795–810. doi: 10.1111/jiec.13345
- Liedel, C. Sustainable battery materials from biomass. ChemSusChem 2020, 13, 2110–2141. doi: 10.1002/cssc.201903577
- Wu, F.; Li, L.; Crandon, L.; et al. Environmental hotspots and greenhouse gas reduction potential for different lithium-ion battery recovery strategies. J. Clean. Prod. 2022, 339, 130697. doi: 10.1016/j.jclepro.2022.130697
- Piątek, J.; Afyon, S.; Budnyak, T.M.; et al. Sustainable Li‐ion batteries: Chemistry and recycling. Adv. Energy Mater. 2021, 11, 2003456. doi: 10.1002/aenm.202003456
- Muzaffar, A.; Ahamed, M.B.; Hussain, C.M. Green supercapacitors: Latest developments and perspectives in the pursuit of sustainability. Renew. Sustain. Energy Rev. 2024, 195, 114324. doi: 10.1016/j.rser.2024.114324
- Shetti, N.P.; Dias, S.; Reddy, K.R. Nanostructured organic and inorganic materials for Li-ion batteries: A review. Mater. Sci. Semicond. Process. 2019, 104, 104684. doi: 10.1016/j.mssp.2019.104684
- Zhang, Y.; Song, X.; Xu, Y.; et al. Utilization of wheat bran for producing activated carbon with high specific surface area via NaOH activation using industrial furnace. J. Clean. Prod. 2019, 210, 366–375. doi: 10.1016/j.jclepro.2018.11.041
- Misnon, I.I.; Zain, N.K.M.; Abd Aziz, R.; et al. Electrochemical properties of carbon from oil palm kernel shell for high performance supercapacitors. Electrochim. Acta 2015, 174, 78–86. doi: 10.1016/j.electacta.2015.05.163
- Tian, Q.; Wang, X.; Xu, X.; et al. A novel porous carbon material made from wild rice stem and its application in supercapacitors. Mater. Chem. Phys. 2018, 213, 267–276. doi: 10.1016/j.matchemphys.2018.04.026
- Mas-Balleste, R.; Gomez-Navarro, C.; Gomez-Herrero, J.; et al. 2D materials: To graphene and beyond. Nanoscale 2011, 3, 20–30. doi: 10.1039/C0NR00323A
- Novoselov, K.S.; Colombo, L.; Gellert, P.R.; et al. A roadmap for graphene. Nature 2012, 490, 192–200. doi: 10.1038/nature11458
- Zhang, K.; Yang, X.; Li, D. Engineering graphene for high-performance supercapacitors: Enabling role of colloidal chemistry. J. Energy Chem. 2018, 27, 1–5. doi: 10.1016/j.jechem.2017.11.027
- Khan, H.A.; Tawalbeh, M.; Aljawrneh, B.; et al. A comprehensive review on supercapacitors: Their promise to flexibility, high temperature, materials, design, and challenges. Energy 2024, 295, 131043. doi: 10.1016/j.energy.2024.131043
- Meena, J.; Sivasubramaniam, S.S.; David, E.; et al. Green supercapacitor: Review and perspectives of sustainable template-free synthesis of metal and metal oxide nanoparticle. RSC Sustain. 2024, 2, 1224–1245. doi: 10.1039/D4SU00009A
- Murdock, H.E.; Gibb, D.; Andre, T.; et al. Renewables 2020-Global Status Report. 2020. Available online: https://inis.iaea.org/records/7cske-9rp48 (accessed on 1 April 2025).
- Gunasekara, S.N.; Barreneche, C.; Inés Fernández, A.; et al. Thermal energy storage materials (TESMs)—What does it take to make them fly? Crystals 2021, 11, 1276. doi: 10.3390/cryst11111276
- Okogeri, O.; Stathopoulos, V.N. What about greener phase change materials? A review on biobased phase change materials for thermal energy storage applications. Int. J. Thermofluids 2021, 10, 100081. doi: 10.1016/j.ijft.2021.100081
- Romdhane, S.B.; Amamou, A.; Khalifa, R.B.; et al. A review on thermal energy storage using phase change materials in passive building applications. J. Build. Eng. 2020, 32, 101563. doi: 10.1016/j.jobe.2020.101563
- Peer, M.S.; Cascetta, M.; Migliari, L.; et al. Nanofluids in Thermal Energy Storage Systems: A Comprehensive Review. Energies 2025, 18, 707. https://doi.org/10.3390/en18030707.
- Wei, G.; Wang, G.; Xu, C.; et al. Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: A review. Renew. Sustain. Energy Rev. 2018, 81, 1771–1786. doi: 10.1016/j.rser.2017.05.271
- Alva, G.; Lin, Y.; Fang, G. An overview of thermal energy storage systems. Energy 2018, 144, 341–378. doi: 10.1016/j.energy.2017.12.037
- Barnes, F.; Levine, J. Large Energy Storage Systems; Taylor & Francis Group: New York, NY, USA, 2011; Volume 7, pp. 1–11. doi: 10.1201/b10778
- Tawalbeh, M.; Khan, H.A.; Al-Othman, A.; et al. A comprehensive review on the recent advances in materials for thermal energy storage applications. Int. J. Thermofluids 2023, 18, 100326. doi: 10.1016/j.ijft.2023.100326
- Hassan, F.; Jamil, F.; Hussain, A.; et al. Recent advancements in latent heat phase change materials and their applications for thermal energy storage and buildings: A state of the art review. Sustain. Energy Technol. Assess. 2022, 49, 101646. doi: 10.1016/j.seta.2021.101646
- Nazir, H.; Batool, M.; Osorio, F.J.B.; et al. Recent developments in phase change materials for energy storage applications: A review. Int. J. Heat Mass Transf. 2019, 129, 491–523. doi: 10.1016/j.ijheatmasstransfer.2018.09.126
- Ling, T.-C.; Poon, C.-S. Use of phase change materials for thermal energy storage in concrete: An overview. Constr. Build. Mater. 2013, 46, 55–62. doi: 10.1016/j.conbuildmat.2013.04.031
- Sarier, N.; Onder, E. Organic phase change materials and their textile applications: An overview. Thermochim. Acta 2012, 540, 7–60. doi: 10.1016/j.tca.2012.04.013
- Jegadheeswaran, S.; Pohekar, S.D.; Kousksou, T. Conductivity particles dispersed organic and inorganic phase change materials for solar energy storage–an exergy based comparative evaluation. Energy Procedia 2012, 14, 643–648. doi: 10.1016/j.egypro.2011.12.989
- Verma, P.; Singal, S.K. Review of mathematical modeling on latent heat thermal energy storage systems using phase-change material. Renew. Sustain. Energy Rev. 2008, 12, 999–1031. doi: 10.1016/j.rser.2006.11.002
- Kang, Y.; Jeong, S.-G.; Wi, S.; et al. Energy efficient Bio-based PCM with silica fume composites to apply in concrete for energy saving in buildings. Sol. Energy Mater. Sol. Cells 2015, 143, 430–434. doi: 10.1016/j.solmat.2015.07.026
- Reyes-Cueva, E.; Nicolalde, J.F.; Martínez-Gómez, J. Characterization of unripe and mature avocado seed oil in different proportions as phase change materials and simulation of their cooling storage. Molecules 2020, 26, 107. doi: 10.3390/molecules26010107
- Yang, G.; Yim, Y.-J.; Lee, J.W.; et al. Carbon-filled organic phase-change materials for thermal energy storage: A review. Molecules 2019, 24, 2055. doi: 10.3390/molecules24112055
- Dogkas, G.; Koukou, M.K.; Konstantaras, J.; et al. Investigating the performance of a thermal energy storage unit with paraffin as phase change material, targeting buildings’ cooling needs: An experimental approach. Int. J. Thermofluids 2020, 3, 100027. doi: 10.1016/j.ijft.2020.100027
- Rasta, I.M.; Suamir, I.N. Study on thermal properties of bio-PCM candidates in comparison with propylene glycol and salt based PCM for sub-zero energy storage applications. In Proceedings of the International Conference on Mechanical Engineering Research and Application, Malang, Indonesia, 23–25 October 2018; IOP Publishing: Bristol, UK, 2019; p. 012024. doi: 10.1088/1757-899X/494/1/012024
- Kahwaji, S.; White, M.A. Edible oils as practical phase change materials for thermal energy storage. Appl. Sci. 2019, 9, 1627. doi: 10.3390/app9081627
- Berger, K.G. Palm kernel oil. In Encyclopedia of Food Sciences and Nutrition, 2dn ed.; Academic Press: Cambridge, MA, USA, 2003; pp. 4322–4324. doi: 10.1016/B0-12-227055-X/01379-1
- Fabiani, C.; Pisello, A.L.; Barbanera, M.; et al. Palm oil-based bio-PCM for energy efficient building applications: Multipurpose thermal investigation and life cycle assessment. J. Energy Storage 2020, 28, 101129. doi: 10.1016/j.est.2019.101129
- Kenisarin, M.M. Thermophysical properties of some organic phase change materials for latent heat storage. A review. Sol. Energy 2014, 107, 553–575. doi: 10.1016/j.solener.2014.05.001
- Jeong, S.-G.; Chung, O.; Yu, S.; et al. Improvement of the thermal properties of Bio-based PCM using exfoliated graphite nanoplatelets. Sol. Energy Mater. Sol. Cells 2013, 117, 87–92. doi: 10.1016/j.solmat.2013.05.038
- Ramadan, M. A review on coupling Green sources to Green storage (G2G): Case study on solar-hydrogen coupling. Int. J. Hydrogen Energy 2021, 46, 30547–30558. doi: 10.1016/j.ijhydene.2020.12.165
- Atilhan, S.; Park, S.; El-Halwagi, M.M.; et al. Green hydrogen as an alternative fuel for the shipping industry. Curr. Opin. Chem. Eng. 2021, 31, 100668. doi: 10.1016/j.coche.2020.100668
- Al Bostami, R.D.; Al Othman, A.; Tawalbeh, M.; et al. Advancements in Zinc-Air Battery Technology and Water-Splitting. Energy Nexus 2025, 17, 100387. doi: 10.1016/j.nexus.2025.100387
- Balat, M. Potential importance of hydrogen as a future solution to environmental and transportation problems. Int. J. Hydrogen Energy 2008, 33, 4013–4029. doi: 10.1016/j.ijhydene.2008.05.047
- Gutiérrez-Martín, F.; García-De María, J.M.; Baïri, A.; et al. Management strategies for surplus electricity loads using electrolytic hydrogen. Int. J. Hydrogen Energy 2009, 34, 8468–8475. doi: 10.1016/j.ijhydene.2009.08.018
- Osman, A.I.; Nasr, M.; Eltaweil, A.S.; et al. Advances in hydrogen storage materials: Harnessing innovative technology, from machine learning to computational chemistry, for energy storage solutions. Int. J. Hydrogen Energy 2024, 57, 1270–1294. doi: 10.1016/j.ijhydene.2024.03.223
- Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353–358. doi: 10.1038/35104634
- Chanchetti, L.F.; Leiva, D.R.; de Faria, L.I.L.; et al. A scientometric review of research in hydrogen storage materials. Int. J. Hydrogen Energy 2020, 45, 5356–5366. doi: 10.1016/j.ijhydene.2019.06.093
- Kukkapalli, V.K.; Kim, S.; Thomas, S.A. Thermal management techniques in metal hydrides for hydrogen storage applications: A review. Energies 2023, 16, 3444. doi: 10.3390/en16083444
- Manoharan, K.; Sundaram, R.; Raman, K. Expeditious re-hydrogenation kinetics of ball-milled magnesium hydride (B-MgH2) decorated acid-treated halloysite nanotube (A-HNT)/polyaniline (PANI) nanocomposite (B-MgH2/A-HNT/PANI) for fuel cell applications. Ionics 2023, 29, 2823–2839. doi: 10.1007/s11581-023-05007-w
- Jastrzębski, K.; Kula, P. Emerging technology for a green, sustainable energy-promising materials for hydrogen storage, from nanotubes to graphene—A review. Materials 2021, 14, 2499. doi: 10.3390/ma14102499
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sdgs.un.org/2030agenda (accessed on 10 October 2024).
- Colglazier, W. Sustainable development agenda: 2030. Science 2015, 349, 1048–1050. doi: 10.1126/science.aad2333
- Ali, A.A.; Al-Othman, A.; Tawalbeh, M.; Ali, A.; et al. Membrane Technologies for Sustainable Development Goals: A Critical Review of Bright Horizons. J. Environ. Chem. Eng. 2024, 13, 114998. doi: 10.1016/j.jece.2024.114998
- United Nations. Sustainable Development Goals: 17 Goals to Transform our World. Available online: https://www.un.org/en/exhibits/page/sdgs-17-goals-transform-world (accessed on 10 October 2024).
- United Nations General Assembly. United Nations General Assembly Resolution A. Antarct. Int. Law 2015, 15900, 1–35.
- Mensah, J. Sustainable development: Meaning, history, principles, pillars, and implications for human action: Literature review. Cogent Soc. Sci. 2019, 5, 1653531. doi: 10.1080/23311886.2019.1653531
- Cao, X.; Hayyat, M.; Henry, J. Green energy investment and technology innovation for carbon reduction: Strategies for achieving SDGs in the G7 countries. Int. J. Hydrogen Energy 2025, 114, 209–220. doi: 10.1016/j.ijhydene.2025.02.484
- Cleaning up water. Nat. Mater. 2008, 7, 341. https://doi.org/10.1038/nmat2178.
- Tiwari, A. Advanced Materials Research and Innovation Priorities for Accomplishing the Sustainable Development Goals. Adv. Mater. Lett. 2021, 12, 1–6. https://doi.org/10.5185/amlett.2021.061633.
- Kyoto Protocol. Framework Convention on Climate Change; UNFCCC: Bonn, Germany, 2010.
- Shukla, P.R.; Skeg, J.; Buendia, E.C.; et al. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable land Management, Food Security, and Greenhouse Gas Fluxes in terrestrial Ecosystems. 2019. Available online: https://www.ipcc.ch/site/assets/uploads/2019/11/SRCCL-Full-Report-Compiled-191128.pdf (accessed on 1 April 2025).
- Bishoge, O.K.; Zhang, L.; Mushi, W.G. The potential renewable energy for sustainable development in Tanzania: A review. Clean Technol. 2018, 1, 70–88. doi: 10.3390/cleantechnol1010006
- Büyüközkan, G.; Karabulut, Y.; Mukul, E. A novel renewable energy selection model for United Nations' sustainable development goals. Energy 2018, 165, 290–302. doi: 10.1016/j.energy.2018.08.215
- Bekhet, H.A.; Harun, N.H. Elasticity and causality among electricity generation from renewable energy and its determinants in Malaysia. Int. J. Energy Econ. Policy 2017, 7, 202–216.
- Mundaca, L.; Neij, L.; Markandya, A.; et al. Towards a Green Energy Economy? Assessing policy choices, strategies and transitional pathways. Appl. Energy 2016, 179, 1283–1292. doi: 10.1016/j.apenergy.2016.08.086
- Albright, R.; Cooley, S. A review of interventions proposed to abate impacts of ocean acidification on coral reefs. Reg. Stud. Mar. Sci. 2019, 29, 100612. doi: 10.1016/j.rsma.2019.100612
- Sen, S.; Ganguly, S. Opportunities, barriers and issues with renewable energy development–A discussion. Renew. Sustain. Energy Rev. 2017, 69, 1170–1181. doi: 10.1016/j.rser.2016.09.137
- Schainker, R.B. Executive overview: Energy storage options for a sustainable energy future. In Proceedings of the 2004 IEEE Power Engineering Society General Meeting, Denver, CO, USA, 6–10 June 2004; pp. 2309–2314.
- United Nations Development Programme. Goal 12: Responsible Consumption and Production; UNDP: New York, NY, USA, 2016.
- Sachs, J.D. The age of Sustainable Development; Columbia University Press: New York, NY, USA, 2015.
- Sachs, J.D. From millennium development goals to sustainable development goals. Lancet 2012, 379, 2206–2211. doi: 10.1016/S0140-6736(12)60685-0
- Martinot, E. Energy efficiency and renewable energy in Russia: Transaction barriers, market intermediation, and capacity building. Energy Policy 1998, 26, 905–915. doi: 10.1016/S0301-4215(98)00022-6
- Olabi, A.G.; Obaideen, K.; Abdelkareem, M.A.; et al. Wind energy contribution to the sustainable development goals: Case study on London array. Sustainability 2023, 15, 4641. doi: 10.3390/su15054641
- Watkins, K. Human Development Report 2007/8. Fighting Climate Change: Human Solidarity in a Divided World (November 27, 2007). UNDP-HDRO Human Development Report 2007. Available online: https://ssrn.com/abstract=2294689 (accessed on April 2025).
- IEA. Tracking SDG 7-The Energy Progress Report 2024; IEA: Paris, France, 2024.
- Sharma, R.; Jang, J.-G.; Hu, J.-W. Phase-change materials in concrete: Opportunities and challenges for sustainable construction and building materials. Materials 2022, 15, 335. doi: 10.3390/ma15010335
- Ahmed Ali, K.; Ahmad, M.I.; Yusup, Y. Issues, impacts, and mitigations of carbon dioxide emissions in the building sector. Sustainability 2020, 12, 7427. doi: 10.3390/su12187427
- Tian, J.; Culley, S.A.; Maier, H.R.; et al. Is renewable energy sustainable? Potential relationships between renewable energy production and the Sustainable Development Goals. NPJ Clim. Action 2024, 3, 35. doi: 10.1038/s44168-024-00120-6
- Gayen, D.; Chatterjee, R.; Roy, S. A review on environmental impacts of renewable energy for sustainable development. Int. J. Environ. Sci. Technol. 2024, 21, 5285–5310. doi: 10.1007/s13762-023-05380-z
- Alam, M.S.; Dinçer, H.; Kisswani, K.M.; et al. Analysis of green energy-oriented sustainable development goals for emerging economies. J. Open Innov. Technol. Mark. Complex. 2024, 10, 100368. doi: 10.1016/j.joitmc.2024.100368
- Bashiru, O.; Ochem, C.; Enyejo, L.A.; et al. The crucial role of renewable energy in achieving the sustainable development goals for cleaner energy. Glob. J. Eng. Technol. Adv. 2024, 19, 11–36. doi: 10.30574/gjeta.2024.19.3.0099
- Rezk, H.; Olabi, A.G.; Mahmoud, M.; et al. Metaheuristics and multi-criteria decision-making for renewable energy systems: Review, progress, bibliometric analysis, and contribution to the sustainable development pillars. Ain Shams Eng. J. 2024, 15, 102883. doi: 10.1016/j.asej.2024.102883
- Narain, R.S. Recent advancements and challenges in green material technology: Preparing today for nourishing tomorrow. Mater. Today Proc. 2023. https://doi.org/10.1016/j.matpr.2023.02.218.
- Ding, P.; Yang, D.; Yang, S.; et al. Stability of organic solar cells: Toward commercial applications. Chem. Soc. Rev. 2024, 53, 2350–2387. doi: 10.1039/D3CS00492A
- Gupta, D.; Boora, A.; Thakur, A.; et al. Green and sustainable synthesis of nanomaterials: Recent advancements and limitations. Environ. Res. 2023, 231, 116316. doi: 10.1016/j.envres.2023.116316
- Herrington, R.J. The Raw Material Challenge of Creating a Green Economy. Minerals 2024, 14, 204. doi: 10.3390/min14020204
- Popescu, C.; Dissanayake, H.; Mansi, E.; et al. Eco Breakthroughs: Sustainable Materials Transforming the Future of Our Planet. Sustainability 2024, 16, 10790. doi: 10.3390/su162310790
- Tiwari, A. Advancement of materials to sustainable & green world. Sustain. Dev. 2023, 2018, 2028. doi: 10.5185/amlett.2023.031724



