Downloads

Nasser, B., Tawalbeh, M., Al-Othman, A., & Yusuf, M. Contributions of Green Energy Materials to Sustainable Development Goals. Renewable and Sustainable Energy Technology. 2025, 1(1), 4. doi: https://doi.org/10.53941/rset.2025.100004

The global shift toward renewable and green energy highlights the critical role of green energy materials in achieving sustainability goals. This paper focuses on how these materials contribute to the three pillars of sustainability: environmental, economic, and social, in alignment with the United Nations Sustainable Development Goals (SDGs). Green energy materials, including photovoltaic materials, thermoelectric materials, electrochemical storage materials, and other materials appear to play a vital role in meeting these pillars. It is found that using these materials, green and renewable energy is projected to contribute up to 55% of global electricity use by 2030. Green energy materials have achieved the three pillars of sustainability. Environmentally, they help to mitigate climate change, reduce greenhouse gas emissions, and protect ecosystems. Economically, these materials foster innovation, create jobs and opportunities, and stimulate economic growth within the green energy sector. Socially, they improve the living standards by providing access to clean energy, reducing health risks, while supporting the development of sustainable cities and communities. By aligning with sustainable development goals, such as clean water, climate action, economic growth, and affordable energy, green energy materials are necessary for achieving a sustainable future. Despite these advances, widespread adoption remains hindered by economic, policy, and technological barriers. Therefore, there is a need for integrative policies, improved lifecycle analysis, and inclusive access to green energy technologies to ensure equitable transition and global sustainability.

Keywords:

Energy materials Green energy materials Green materials Sustainability Sustainable Development Goals (SDGs)

References

  1. Madhu, R.; Dalapati, G.K.; Wong, T.K.S.; et al. Clean energy for sustainable development: Importance of new materials. In Sulfide and Selenide Based Materials for Emerging Applications; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–15. doi: 10.1016/B978-0-323-99860-4.00018-6
  2. International Energy Agency. Energy and Climate Change: World Energy Outlook Special Report; International Energy Agency: Paris, France, 2015.
  3. Abdul Latif, S.N.; Chiong, M.S.; Rajoo, S.; et al. The trend and status of energy resources and greenhouse gas emissions in the Malaysia power generation mix. Energies 2021, 14, 2200. doi: 10.3390/en14082200
  4. Aktar, M.A.; Harun, M.B.; Alam, M.M. Green energy and sustainable development. In Affordable and Clean Energy; Springer: Cham, Switzerland, 2020; pp. 1–11. doi: 10.1007/978-3-319-71057-0_47-1
  5. Hoel, M.; Kverndokk, S. Depletion of fossil fuels and the impacts of global warming. Resour. Energy Econ. 1996, 18, 115–136. doi: 10.1016/0928-7655(96)00005-X
  6. Bhatt, R.P. Achievement of SDGS globally in biodiversity conservation and reduction of greenhouse gas emissions by using green energy and maintaining forest cover. GSC Adv. Res. Rev. 2023, 17, 1–21. doi: 10.30574/gscarr.2023.17.3.0421
  7. Androniceanu, A.; Sabie, O.M. Overview of green energy as a real strategic option for sustainable development. Energies 2022, 15, 8573. doi: 10.3390/en15228573
  8. United Nations. Sustainability. Available online: https://www.un.org/en/academic-impact/sustainability (accessed on 10 October 2024).
  9. Kaygusuz, K. Energy for sustainable development: A case of developing countries. Renew. Sustain. Energy Rev. 2012, 16, 1116–1126. doi: 10.1016/j.rser.2011.11.013
  10. Papadis, E.; Tsatsaronis, G. Challenges in the decarbonization of the energy sector. Energy 2020, 205, 118025. doi: 10.1016/j.energy.2020.118025
  11. Chong, C.T.; Van Fan, Y.; Lee, C.T.; Klemeš, J.J. Post COVID-19 ENERGY sustainability and carbon emissions neutrality. Energy 2022, 241, 122801. doi: 10.1016/j.energy.2021.122801
  12. European Parliament. Green Deal: Key to a Climate-Neutral and Sustainable EU. Available online: https://www.europarl.europa.eu/topics/en/article/20200618STO81513/green-deal-key-to-a-climate-neutral-and-sustainable-eu (accessed on 1 April 2025).
  13. Obaideen, K.; Olabi, A.G.; Al Swailmeen, Y.; et al. Solar energy: Applications, trends analysis, bibliometric analysis and research contribution to sustainable development goals (SDGs). Sustainability 2023, 15, 1418. doi: 10.3390/su15021418
  14. Gedam, R.S.; Kalyani, N.T.; Dhoble, S.J. Energy materials: Fundamental physics and latest advances in relevant technology. In Energy Materials; Elsevier: Amsterdam, The Netherlands, 2021; pp. 3–26. doi: 10.1016/B978-0-12-823710-6.00010-8
  15. Musilek, P.; Prauzek, M.; Krömer, P.; Rodway, J.; Bartoň, T. Intelligent energy management for environmental monitoring systems. In Smart Sensors Networks; Elsevier: Amsterdam, The Netherlands, 2017; pp. 67–94. doi: 10.1016/B978-0-12-809859-2.00005-X
  16. Kalyani, N.T.; Dhoble, S.J. Energy materials: Applications and propelling opportunities. In Energy Materials; Elsevier: Amsterdam, The Netherlands, 2021; pp. 567–580. doi: 10.1016/B978-0-12-823710-6.00011-X
  17. Midilli, A.; Dincer, I.; Ay, M. Green energy strategies for sustainable development. Energy Policy 2006, 34, 3623–3633. doi: 10.1016/j.enpol.2005.08.003
  18. Duehnen, S.; Betz, J.; Kolek, M.; Schmuch, R.; Winter, M.; Placke, T. Toward green battery cells: Perspective on materials and technologies. Small Methods 2020, 4, 2000039. doi: 10.1002/smtd.202000039
  19. Anastas, P.T. Introduction: Green chemistry. Chem. Rev. 2007, 6, 2167–2168. doi: 10.1021/cr0783784
  20. Horváth, I.T. Introduction: Sustainable chemistry. 2018, 118, 369–371. doi: 10.1021/acs.chemrev.7b00721
  21. Saleh, H.E.-D.M.; Koller, M. Introductory chapter: Principles of green chemistry. In Green Chemistry; IntechOpen: London, UK, 2018. doi: 10.5772/intechopen.71191
  22. Goel, S.; Munjal, M.; Sharma, R.K.; et al. Advanced applications of green materials in supercapacitors. In Applications of Advanced Green Materials; Elsevier: Amsterdam, The Netherlands, 2021; pp. 339–371. doi: 10.1016/B978-0-12-820484-9.00014-3
  23. Bontempi, E.; Sorrentino, G.P.; Zanoletti, A.; et al. Sustainable materials and their contribution to the sustainable development goals (SDGs): A critical review based on an Italian example. Molecules 2021, 26, 1407. doi: 10.3390/molecules26051407
  24. Zhao, Y.; Liu, L.; Yu, M. Comparison and analysis of carbon emissions of traditional, prefabricated, and green material buildings in materialization stage. J. Clean. Prod. 2023, 406, 137152. doi: 10.1016/j.jclepro.2023.137152
  25. Nandy, S.; Fortunato, E.; Martins, R. Green economy and waste management: An inevitable plan for materials science. Prog. Nat. Sci. Mater. Int. 2022, 32, 1–9. doi: 10.1016/j.pnsc.2022.01.001
  26. Sarkar, B.; Ullah, M.; Sarkar, M. Environmental and economic sustainability through innovative green products by remanufacturing. J. Clean. Prod. 2022, 332, 129813. doi: 10.1016/j.jclepro.2021.129813
  27. Parida, B.; Iniyan, S.; Goic, R. A review of solar photovoltaic technologies. Renew. Sustain. Energy Rev. 2011, 15, 1625–1636. doi: 10.1016/j.rser.2010.11.032
  28. Obaideen, K.; AlMallahi, M.N.; Alami, A.H.; et al. On the contribution of solar energy to sustainable developments goals: Case study on Mohammed bin Rashid Al Maktoum Solar Park. Int. J. Thermofluids 2021, 12, 100123. doi: 10.1016/j.ijft.2021.100123
  29. Chowdhury, M.S.; Rahman, K.S.; Chowdhury, T.; et al. An overview of solar photovoltaic panels’ end-of-life material recycling. Energy Strategy Rev. 2020, 27, 100431. doi: 10.1016/j.esr.2019.100431
  30. Ivanko, A. Solar PV Waste Management in the Context of Sustainable Development Goals. Master’s Thesis, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine, 2021.
  31. Irena, I.P. End-of-Life Management: Solar Photovoltaic Panels; USDOE Office of Energy Efficiency and Renewable Energy (EERE): Washington, DC, USA, 2016.
  32. Ghosh, S.; Yadav, R. Future of photovoltaic technologies: A comprehensive review. Sustain. Energy Technol. Assess. 2021, 47, 101410. doi: 10.1016/j.seta.2021.101410
  33. Rajvikram, M.; Leoponraj, S. A method to attain power optimality and efficiency in solar panel. Beni-Suef Univ. J. Basic Appl. Sci. 2018, 7, 705–708. doi: 10.1016/j.bjbas.2018.08.004
  34. Dada, M.; Popoola, P. Recent advances in solar photovoltaic materials and systems for energy storage applications: A review. Beni-Suef Univ. J. Basic Appl. Sci. 2023, 12, 1–15. doi: 10.1186/s43088-023-00405-5
  35. Ajayan, J.; Nirmal, D.; Mohankumar, P.; et al. A review of photovoltaic performance of organic/inorganic solar cells for future renewable and sustainable energy technologies. Superlattices Microstruct. 2020, 143, 106549. doi: 10.1016/j.spmi.2020.106549
  36. Kumari, N.; Singh, S.K.; Kumar, S. A comparative study of different materials used for solar photovoltaics technology. Mater. Today Proc. 2022, 66, 3522–3528. doi: 10.1016/j.matpr.2022.06.403
  37. Goetzberger, A.; Hebling, C.; Schock, H.-W. Photovoltaic materials, history, status and outlook. Mater. Sci. Eng. R Rep. 2003, 40, 1–46. doi: 10.1016/S0927-796X(02)00092-X
  38. Ehrling, S.; Reynolds, E.M.; Bon, V.; et al. Adaptive response of a metal–organic framework through reversible disorder–disorder transitions. Nat. Chem. 2021, 13, 568–574. doi: 10.1038/s41557-021-00684-4
  39. Stuckelberger, M.; Biron, R.; Wyrsch, N.; et al. Progress in solar cells from hydrogenated amorphous silicon. Renew. Sustain. Energy Rev. 2017, 76, 1497–1523. doi: 10.1016/j.rser.2016.11.190
  40. Cherradi, N. Solar PV Technologies What’s Next; Becquerel Institute: Brussels, Belgium, 2019.
  41. Poortmans, J.; Arkhipov, V. Thin Film Solar Cells: Fabrication, Characterization and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2006; Volume 18. doi: 10.1002/0470091282
  42. Sharma, S.; Jain, K.K.; Sharma, A. Solar cells: In research and applications—A review. Mater. Sci. Appl. 2015, 6, 1145–1155. doi: 10.4236/msa.2015.612113
  43. Younas, T.; Khan, U.A.; Zaidi, S.; et al. Increasing Efficiency of Solar Panels via Photovoltaic Materials. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2022; p. 012005. doi: 10.1088/1755-1315/1048/1/012005
  44. Chander, S.; Tripathi, S.K.; Kaur, I.; et al. Nontoxic and earth-abundant Cu2ZnSnS4 (CZTS) thin film solar cells: A review on high throughput processed methods. Mater. Today Sustain. 2023, 25, 100662. doi: 10.1016/j.mtsust.2023.100662
  45. Green, M.A.; Dunlop, E.D.; Yoshita, M.; et al. Solar cell efficiency tables (Version 63). Prog. Photovolt. Res. Appl. 2023, 1–16. https://doi.org/10.1002/pip.3750.
  46. Green, M.A.; Ho-Baillie, A.; Snaith, H.J. The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506–514. doi: 10.1038/nphoton.2014.134
  47. Bahutair, W.N.; Alhajar, A.; Al Othman, A.; et al. The role of MXenes and MXene composites in enhancing dye-sensitized solar cells characteristics. Process Saf. Environ. Prot. 2024, 191, 490–504. doi: 10.1016/j.psep.2024.09.008
  48. Maisch, P.; Lucera, L.; Brabec, C.J.; et al. Flexible Carbon‐based Electronics: Flexible Solar Cells. Flex. Carbon‐Based Electron. 2018, 51–69. doi: 10.1002/9783527804894.ch3
  49. Fallahpour, A.H.; Gentilini, D.; Gagliardi, A.; et al. Systematic study of the PCE and device operation of organic tandem solar cells. IEEE J. Photovolt. 2015, 6, 202–210. doi: 10.1109/JPHOTOV.2015.2486382
  50. Li, S.; Liu, X.; Zhang, X.; et al. Harvesting Thermal Energy through Pyroelectric and Thermoelectric Nanomaterials for Catalytic Applications. Catalysts 2024, 14, 159. doi: 10.3390/catal14030159
  51. Tzounis, L. Synthesis and processing of thermoelectric nanomaterials, nanocomposites, and devices. In Nanomaterials Synthesis; Elsevier: Amsterdam, The Netherlands, 2019; pp. 295–336. doi: 10.1016/B978-0-12-815751-0.00009-2
  52. Jia, N.; Cao, J.; Tan, X.Y.; et al. Thermoelectric materials and transport physics. Mater. Today Phys. 2021, 21, 100519. doi: 10.1016/j.mtphys.2021.100519
  53. Zhang, Y.; Zhang, Q.; Chen, G. Carbon and carbon composites for thermoelectric applications. Carbon Energy 2020, 2, 408–436. doi: 10.1002/cey2.68
  54. Zhu, T.; Liu, Y.; Fu, C.; et al. Compromise and synergy in high‐efficiency thermoelectric materials. Adv. Mater. 2017, 29, 1605884. doi: 10.1002/adma.201702816
  55. Chen, Z.-G.; Shi, X.; Zhao, L.-D.; et al. High-performance SnSe thermoelectric materials: Progress and future challenge. Prog. Mater. Sci. 2018, 97, 283–346. doi: 10.1016/j.pmatsci.2018.04.005
  56. Zhao, L.-D.; Lo, S.-H.; Zhang, Y.; et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 2014, 508, 373–377. doi: 10.1038/nature13184
  57. Gao, C.; Chen, G. Conducting polymer/carbon particle thermoelectric composites: Emerging green energy materials. Compos. Sci. Technol. 2016, 124, 52–70. doi: 10.1016/j.compscitech.2016.01.014
  58. Wan, C.; Gu, X.; Dang, F.; et al. Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS 2. Nat. Mater. 2015, 14, 622–627. doi: 10.1038/nmat4251
  59. Zhang, Y.; Heo, Y.-J.; Park, M.; et al. Recent advances in organic thermoelectric materials: Principle mechanisms and emerging carbon-based green energy materials. Polymers 2019, 11, 167. doi: 10.3390/polym11010167
  60. Di, C.; Xu, W.; Zhu, D. Organic thermoelectrics for green energy. Natl. Sci. Rev. 2016, 3, 269–271. doi: 10.1093/nsr/nww040
  61. Caballero‐Calero, O.; Ares, J.R.; Martín‐González, M. Environmentally friendly thermoelectric materials: High performance from inorganic components with low toxicity and abundance in the earth. Adv. Sustain. Syst. 2021, 5, 2100095. doi: 10.1002/adsu.202100095
  62. Yu, C.; Zhang, G.; Zhang, Y.-W.; et al. Strain engineering on the thermal conductivity and heat flux of thermoelectric Bi2Te3 nanofilm. Nano Energy 2015, 17, 104–110. doi: 10.1016/j.nanoen.2015.08.003
  63. Massetti, M.; Jiao, F.; Ferguson, A.J.; et al. Unconventional thermoelectric materials for energy harvesting and sensing applications. Chem. Rev. 2021, 121, 12465–12547. doi: 10.1021/acs.chemrev.1c00218
  64. Kawamoto, M.; He, P.; Ito, Y. Green processing of carbon nanomaterials. Adv. Mater. 2017, 29, 1602423. doi: 10.1002/adma.201602423
  65. Yuan, Y.; Lu, J. Demanding energy from carbon. Carbon Energy 2019, 1, 8–12. doi: 10.1002/cey2.12
  66. Wang, H.; Cui, Y. Nanodiamonds for energy. Carbon Energy 2019, 1, 13–18. doi: 10.1002/cey2.9
  67. Balandin, A.A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011, 10, 569–581. doi: 10.1038/nmat3064
  68. Abouricha, S.; Aziam, H.; Noukrati, H.; et al. Biopolymers‐Based Proton Exchange Membranes For Fuel Cell Applications: A Comprehensive Review. ChemElectroChem 2024, 11, e202300648. doi: 10.1002/celc.202300648
  69. Pedram, S.; Batool, M.; Yapp, K.; et al. A review on bioinspired proton exchange membrane fuel cell: Design and materials. Adv. Energy Sustain. Res. 2021, 2, 2000092. doi: 10.1002/aesr.202000092
  70. Frey, T.; Linardi, M. Effects of membrane electrode assembly preparation on the polymer electrolyte membrane fuel cell performance. Electrochim. Acta 2004, 50, 99–105. doi: 10.1016/j.electacta.2004.07.017
  71. Gouda, M.H.; Elnouby, M.; Aziz, A.N.; et al. Green and low-cost membrane electrode assembly for proton exchange membrane fuel cells: Effect of double-layer electrodes and gas diffusion layer. Front. Mater. 2020, 6, 337. doi: 10.3389/fmats.2019.00337
  72. Gouda, M.H.; Gouveia, W.; Afonso, M.L.; et al. Poly (vinyl alcohol)-based crosslinked ternary polymer blend doped with sulfonated graphene oxide as a sustainable composite membrane for direct borohydride fuel cells. J. Power Sources 2019, 432, 92–101. doi: 10.1016/j.jpowsour.2019.05.078
  73. Baroutaji, A.; Arjunan, A.; Robinson, J.; et al. PEMFC poly-generation systems: Developments, merits, and challenges. Sustainability 2021, 13, 11696. doi: 10.3390/su132111696
  74. Liu, M.; Guo, X.; Hu, L.; et al. Fe3O4/Fe3C@ Nitrogen‐Doped Carbon for Enhancing Oxygen Reduction Reaction. ChemNanoMat 2019, 5, 187–193. doi: 10.1002/cnma.201800432
  75. Lucia, U. Overview on fuel cells. Renew. Sustain. Energy Rev. 2014, 30, 164–169. doi: 10.1016/j.rser.2013.09.025
  76. Elkafas, A.G.; Rivarolo, M.; Gadducci, E.; et al. Fuel cell systems for maritime: A review of research development, commercial products, applications, and perspectives. Processes 2022, 11, 97. doi: 10.3390/pr11010097
  77. Sajid, A.; Pervaiz, E.; Ali, H.; et al. A perspective on development of fuel cell materials: Electrodes and electrolyte. Int. J. Energy Res. 2022, 46, 6953–6988. doi: 10.1002/er.7635
  78. Alinejad, Z.; Parham, N.; Tawalbeh, M.; et al. Progress in green hydrogen production and innovative materials for fuel cells: A pathway towards sustainable energy solutions. Int. J. Hydrogen Energy 2024, 140, 1078–1094. doi: 10.1016/j.ijhydene.2024.09.153
  79. Ali, A.A.; Al-Othman, A.; Tawalbeh, M. Exploring natural polymers for the development of proton exchange membranes in fuel cells. Process Saf. Environ. Prot. 2024, 189, 1379–1401. doi: 10.1016/j.psep.2024.06.130
  80. Mahmoud, M.; Ramadan, M.; Abdelkareem, M.A.; Olabi, A.G. Introduction and definition of wind energy. In Renewable Energy-Volume 1: Solar, Wind, and Hydropower; Elsevier: Amsterdam, The Netherlands, 2023; pp. 299–314. doi: 10.1016/B978-0-323-99568-9.00016-9
  81. Olabi, A.G.; Wilberforce, T.; Elsaid, K.; et al. A review on failure modes of wind turbine components. Energies 2021, 14, 5241. doi: 10.3390/en14175241
  82. El Mouhsine, S.; Oukassou, K.; Ichenial, M.M.; et al. Aerodynamics and structural analysis of wind turbine blade. Procedia Manuf. 2018, 22, 747–756. doi: 10.1016/j.promfg.2018.03.107
  83. Abrahamsen, A.B.; Natarajan, A.; Kitzing, L.; et al. Towards sustainable wind energy. In DTU International Energy Report 2021: Perspectives on Wind Energy; DTU Wind Energy: Roskilde, Denmark, 2021; pp. 144–150.
  84. Bashir, M.B.A. Principle parameters and environmental impacts that affect the performance of wind turbine: An overview. Arab. J. Sci. Eng. 2022, 47, 7891–7909. doi: 10.1007/s13369-021-06357-1
  85. Karuppannan Gopalraj, S.; Kärki, T. A review on the recycling of waste carbon fibre/glass fibre-reinforced composites: Fibre recovery, properties and life-cycle analysis. SN Appl. Sci. 2020, 2, 433. doi: 10.1007/s42452-020-2195-4
  86. Mdallal, A.; Mahmoud, M.; Abdelkareem, M.A.; et al. Green Materials in Wind Turbines. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, Netherlands, 2023.
  87. Thomas, L.; Ramachandra, M. Advanced materials for wind turbine blade-A Review. Mater. Today Proc. 2018, 5, 2635–2640. doi: 10.1016/j.matpr.2018.01.043
  88. Mishnaevsky Jr, L.; Branner, K.; Petersen, H.N.; et al. Materials for wind turbine blades: An overview. Materials 2017, 10, 1285. doi: 10.3390/ma10111285
  89. Leon, M.J. Recycling of wind turbine blades: Recent developments. Curr. Opin. Green Sustain. Chem. 2023, 39, 100746. doi: 10.1016/j.cogsc.2022.100746
  90. Chen, J.; Wang, J.; Ni, A. Recycling and reuse of composite materials for wind turbine blades: An overview. J. Reinf. Plast. Compos. 2019, 38, 567–577. doi: 10.1177/0731684419833470
  91. Rathore, N.; Panwar, N.L. Environmental impact and waste recycling technologies for modern wind turbines: An overview. Waste Manag. Res. 2023, 41, 744–759. doi: 10.1177/0734242X221135527
  92. Khan, K.; Tareen, A.K.; Aslam, M.; et al. Going green with batteries and supercapacitor: Two dimensional materials and their nanocomposites based energy storage applications. Prog. Solid State Chem. 2020, 58, 100254. doi: 10.1016/j.progsolidstchem.2019.100254
  93. Tawalbeh, M.; Ali, A.; Aljawrneh, B.; et al. Progress in safe nano-structured electrolytes for sodium ion batteries: A comprehensive review. Nano-Struct. Nano-Objects 2024, 39, 101311. doi: 10.1016/j.nanoso.2024.101311
  94. Saikia, B.K.; Benoy, S.M.; Bora, M.; et al. A brief review on supercapacitor energy storage devices and utilization of natural carbon resources as their electrode materials. Fuel 2020, 282, 118796. doi: 10.1016/j.fuel.2020.118796
  95. Sharma, K.; Arora, A.; Tripathi, S.K. Review of supercapacitors: Materials and devices. J. Energy Storage 2019, 21, 801–825. doi: 10.1016/j.est.2019.01.010
  96. Xie, J.; Yang, P.; Wang, Y.; et al. Puzzles and confusions in supercapacitor and battery: Theory and solutions. J. Power Sources 2018, 401, 213–223. doi: 10.1016/j.jpowsour.2018.08.090
  97. Wayu, M. Manganese oxide carbon-based nanocomposite in energy storage applications. Solids 2021, 2, 232–248. doi: 10.3390/solids2020015
  98. Manjakkal, L.; Jain, A.; Nandy, S.; et al. Sustainable electrochemical energy storage devices using natural bast fibres. Chem. Eng. J. 2023, 465, 142845. doi: 10.1016/j.cej.2023.142845
  99. Bhattacharjya, D.; Yu, J.-S. Activated carbon made from cow dung as electrode material for electrochemical double layer capacitor. J. Power Sources 2014, 262, 224–231. doi: 10.1016/j.jpowsour.2014.03.143
  100. Debnath, S. Flax fibre extraction to textiles and sustainability: A holistic approach. In Sustainable Fashion and Textiles in Latin America; Springer: Singapore, 2021; pp. 73–85. doi: 10.1007/978-981-16-1850-5_4
  101. Jakubec, P.; Bartusek, S.; Dvořáček, J.J.; et al. Flax-derived carbon: A highly durable electrode material for electrochemical double-layer supercapacitors. Nanomaterials 2021, 11, 2229. doi: 10.3390/nano11092229
  102. Hasan, K.M.F.; Horváth, P.G.; Alpár, T. Potential natural fiber polymeric nanobiocomposites: A review. Polymers 2020, 12, 1072. doi: 10.3390/polym12051072
  103. Keya, K.N.; Kona, N.A.; Koly, F.A.; et al. Natural fiber reinforced polymer composites: History, types, advantages and applications. Mater. Eng. Res. 2019, 1, 69–85. doi: 10.25082/MER.2019.02.006
  104. Cheng, X.B.; Liu, H.; Yuan, H.; et al. A perspective on sustainable energy materials for lithium batteries. SusMat 2021, 1, 38–50. doi: 10.1002/sus2.4
  105. Barke, A.; Cistjakov, W.; Steckermeier, D.; et al. Green batteries for clean skies: Sustainability assessment of lithium‐sulfur all‐solid‐state batteries for electric aircraft. J. Ind. Ecol. 2023, 27, 795–810. doi: 10.1111/jiec.13345
  106. Liedel, C. Sustainable battery materials from biomass. ChemSusChem 2020, 13, 2110–2141. doi: 10.1002/cssc.201903577
  107. Wu, F.; Li, L.; Crandon, L.; et al. Environmental hotspots and greenhouse gas reduction potential for different lithium-ion battery recovery strategies. J. Clean. Prod. 2022, 339, 130697. doi: 10.1016/j.jclepro.2022.130697
  108. Piątek, J.; Afyon, S.; Budnyak, T.M.; et al. Sustainable Li‐ion batteries: Chemistry and recycling. Adv. Energy Mater. 2021, 11, 2003456. doi: 10.1002/aenm.202003456
  109. Muzaffar, A.; Ahamed, M.B.; Hussain, C.M. Green supercapacitors: Latest developments and perspectives in the pursuit of sustainability. Renew. Sustain. Energy Rev. 2024, 195, 114324. doi: 10.1016/j.rser.2024.114324
  110. Shetti, N.P.; Dias, S.; Reddy, K.R. Nanostructured organic and inorganic materials for Li-ion batteries: A review. Mater. Sci. Semicond. Process. 2019, 104, 104684. doi: 10.1016/j.mssp.2019.104684
  111. Zhang, Y.; Song, X.; Xu, Y.; et al. Utilization of wheat bran for producing activated carbon with high specific surface area via NaOH activation using industrial furnace. J. Clean. Prod. 2019, 210, 366–375. doi: 10.1016/j.jclepro.2018.11.041
  112. Misnon, I.I.; Zain, N.K.M.; Abd Aziz, R.; et al. Electrochemical properties of carbon from oil palm kernel shell for high performance supercapacitors. Electrochim. Acta 2015, 174, 78–86. doi: 10.1016/j.electacta.2015.05.163
  113. Tian, Q.; Wang, X.; Xu, X.; et al. A novel porous carbon material made from wild rice stem and its application in supercapacitors. Mater. Chem. Phys. 2018, 213, 267–276. doi: 10.1016/j.matchemphys.2018.04.026
  114. Mas-Balleste, R.; Gomez-Navarro, C.; Gomez-Herrero, J.; et al. 2D materials: To graphene and beyond. Nanoscale 2011, 3, 20–30. doi: 10.1039/C0NR00323A
  115. Novoselov, K.S.; Colombo, L.; Gellert, P.R.; et al. A roadmap for graphene. Nature 2012, 490, 192–200. doi: 10.1038/nature11458
  116. Zhang, K.; Yang, X.; Li, D. Engineering graphene for high-performance supercapacitors: Enabling role of colloidal chemistry. J. Energy Chem. 2018, 27, 1–5. doi: 10.1016/j.jechem.2017.11.027
  117. Khan, H.A.; Tawalbeh, M.; Aljawrneh, B.; et al. A comprehensive review on supercapacitors: Their promise to flexibility, high temperature, materials, design, and challenges. Energy 2024, 295, 131043. doi: 10.1016/j.energy.2024.131043
  118. Meena, J.; Sivasubramaniam, S.S.; David, E.; et al. Green supercapacitor: Review and perspectives of sustainable template-free synthesis of metal and metal oxide nanoparticle. RSC Sustain. 2024, 2, 1224–1245. doi: 10.1039/D4SU00009A
  119. Murdock, H.E.; Gibb, D.; Andre, T.; et al. Renewables 2020-Global Status Report. 2020. Available online: https://inis.iaea.org/records/7cske-9rp48 (accessed on 1 April 2025).
  120. Gunasekara, S.N.; Barreneche, C.; Inés Fernández, A.; et al. Thermal energy storage materials (TESMs)—What does it take to make them fly? Crystals 2021, 11, 1276. doi: 10.3390/cryst11111276
  121. Okogeri, O.; Stathopoulos, V.N. What about greener phase change materials? A review on biobased phase change materials for thermal energy storage applications. Int. J. Thermofluids 2021, 10, 100081. doi: 10.1016/j.ijft.2021.100081
  122. Romdhane, S.B.; Amamou, A.; Khalifa, R.B.; et al. A review on thermal energy storage using phase change materials in passive building applications. J. Build. Eng. 2020, 32, 101563. doi: 10.1016/j.jobe.2020.101563
  123. Peer, M.S.; Cascetta, M.; Migliari, L.; et al. Nanofluids in Thermal Energy Storage Systems: A Comprehensive Review. Energies 2025, 18, 707. https://doi.org/10.3390/en18030707.
  124. Wei, G.; Wang, G.; Xu, C.; et al. Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: A review. Renew. Sustain. Energy Rev. 2018, 81, 1771–1786. doi: 10.1016/j.rser.2017.05.271
  125. Alva, G.; Lin, Y.; Fang, G. An overview of thermal energy storage systems. Energy 2018, 144, 341–378. doi: 10.1016/j.energy.2017.12.037
  126. Barnes, F.; Levine, J. Large Energy Storage Systems; Taylor & Francis Group: New York, NY, USA, 2011; Volume 7, pp. 1–11. doi: 10.1201/b10778
  127. Tawalbeh, M.; Khan, H.A.; Al-Othman, A.; et al. A comprehensive review on the recent advances in materials for thermal energy storage applications. Int. J. Thermofluids 2023, 18, 100326. doi: 10.1016/j.ijft.2023.100326
  128. Hassan, F.; Jamil, F.; Hussain, A.; et al. Recent advancements in latent heat phase change materials and their applications for thermal energy storage and buildings: A state of the art review. Sustain. Energy Technol. Assess. 2022, 49, 101646. doi: 10.1016/j.seta.2021.101646
  129. Nazir, H.; Batool, M.; Osorio, F.J.B.; et al. Recent developments in phase change materials for energy storage applications: A review. Int. J. Heat Mass Transf. 2019, 129, 491–523. doi: 10.1016/j.ijheatmasstransfer.2018.09.126
  130. Ling, T.-C.; Poon, C.-S. Use of phase change materials for thermal energy storage in concrete: An overview. Constr. Build. Mater. 2013, 46, 55–62. doi: 10.1016/j.conbuildmat.2013.04.031
  131. Sarier, N.; Onder, E. Organic phase change materials and their textile applications: An overview. Thermochim. Acta 2012, 540, 7–60. doi: 10.1016/j.tca.2012.04.013
  132. Jegadheeswaran, S.; Pohekar, S.D.; Kousksou, T. Conductivity particles dispersed organic and inorganic phase change materials for solar energy storage–an exergy based comparative evaluation. Energy Procedia 2012, 14, 643–648. doi: 10.1016/j.egypro.2011.12.989
  133. Verma, P.; Singal, S.K. Review of mathematical modeling on latent heat thermal energy storage systems using phase-change material. Renew. Sustain. Energy Rev. 2008, 12, 999–1031. doi: 10.1016/j.rser.2006.11.002
  134. Kang, Y.; Jeong, S.-G.; Wi, S.; et al. Energy efficient Bio-based PCM with silica fume composites to apply in concrete for energy saving in buildings. Sol. Energy Mater. Sol. Cells 2015, 143, 430–434. doi: 10.1016/j.solmat.2015.07.026
  135. Reyes-Cueva, E.; Nicolalde, J.F.; Martínez-Gómez, J. Characterization of unripe and mature avocado seed oil in different proportions as phase change materials and simulation of their cooling storage. Molecules 2020, 26, 107. doi: 10.3390/molecules26010107
  136. Yang, G.; Yim, Y.-J.; Lee, J.W.; et al. Carbon-filled organic phase-change materials for thermal energy storage: A review. Molecules 2019, 24, 2055. doi: 10.3390/molecules24112055
  137. Dogkas, G.; Koukou, M.K.; Konstantaras, J.; et al. Investigating the performance of a thermal energy storage unit with paraffin as phase change material, targeting buildings’ cooling needs: An experimental approach. Int. J. Thermofluids 2020, 3, 100027. doi: 10.1016/j.ijft.2020.100027
  138. Rasta, I.M.; Suamir, I.N. Study on thermal properties of bio-PCM candidates in comparison with propylene glycol and salt based PCM for sub-zero energy storage applications. In Proceedings of the International Conference on Mechanical Engineering Research and Application, Malang, Indonesia, 23–25 October 2018; IOP Publishing: Bristol, UK, 2019; p. 012024. doi: 10.1088/1757-899X/494/1/012024
  139. Kahwaji, S.; White, M.A. Edible oils as practical phase change materials for thermal energy storage. Appl. Sci. 2019, 9, 1627. doi: 10.3390/app9081627
  140. Berger, K.G. Palm kernel oil. In Encyclopedia of Food Sciences and Nutrition, 2dn ed.; Academic Press: Cambridge, MA, USA, 2003; pp. 4322–4324. doi: 10.1016/B0-12-227055-X/01379-1
  141. Fabiani, C.; Pisello, A.L.; Barbanera, M.; et al. Palm oil-based bio-PCM for energy efficient building applications: Multipurpose thermal investigation and life cycle assessment. J. Energy Storage 2020, 28, 101129. doi: 10.1016/j.est.2019.101129
  142. Kenisarin, M.M. Thermophysical properties of some organic phase change materials for latent heat storage. A review. Sol. Energy 2014, 107, 553–575. doi: 10.1016/j.solener.2014.05.001
  143. Jeong, S.-G.; Chung, O.; Yu, S.; et al. Improvement of the thermal properties of Bio-based PCM using exfoliated graphite nanoplatelets. Sol. Energy Mater. Sol. Cells 2013, 117, 87–92. doi: 10.1016/j.solmat.2013.05.038
  144. Ramadan, M. A review on coupling Green sources to Green storage (G2G): Case study on solar-hydrogen coupling. Int. J. Hydrogen Energy 2021, 46, 30547–30558. doi: 10.1016/j.ijhydene.2020.12.165
  145. Atilhan, S.; Park, S.; El-Halwagi, M.M.; et al. Green hydrogen as an alternative fuel for the shipping industry. Curr. Opin. Chem. Eng. 2021, 31, 100668. doi: 10.1016/j.coche.2020.100668
  146. Al Bostami, R.D.; Al Othman, A.; Tawalbeh, M.; et al. Advancements in Zinc-Air Battery Technology and Water-Splitting. Energy Nexus 2025, 17, 100387. doi: 10.1016/j.nexus.2025.100387
  147. Balat, M. Potential importance of hydrogen as a future solution to environmental and transportation problems. Int. J. Hydrogen Energy 2008, 33, 4013–4029. doi: 10.1016/j.ijhydene.2008.05.047
  148. Gutiérrez-Martín, F.; García-De María, J.M.; Baïri, A.; et al. Management strategies for surplus electricity loads using electrolytic hydrogen. Int. J. Hydrogen Energy 2009, 34, 8468–8475. doi: 10.1016/j.ijhydene.2009.08.018
  149. Osman, A.I.; Nasr, M.; Eltaweil, A.S.; et al. Advances in hydrogen storage materials: Harnessing innovative technology, from machine learning to computational chemistry, for energy storage solutions. Int. J. Hydrogen Energy 2024, 57, 1270–1294. doi: 10.1016/j.ijhydene.2024.03.223
  150. Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353–358. doi: 10.1038/35104634
  151. Chanchetti, L.F.; Leiva, D.R.; de Faria, L.I.L.; et al. A scientometric review of research in hydrogen storage materials. Int. J. Hydrogen Energy 2020, 45, 5356–5366. doi: 10.1016/j.ijhydene.2019.06.093
  152. Kukkapalli, V.K.; Kim, S.; Thomas, S.A. Thermal management techniques in metal hydrides for hydrogen storage applications: A review. Energies 2023, 16, 3444. doi: 10.3390/en16083444
  153. Manoharan, K.; Sundaram, R.; Raman, K. Expeditious re-hydrogenation kinetics of ball-milled magnesium hydride (B-MgH2) decorated acid-treated halloysite nanotube (A-HNT)/polyaniline (PANI) nanocomposite (B-MgH2/A-HNT/PANI) for fuel cell applications. Ionics 2023, 29, 2823–2839. doi: 10.1007/s11581-023-05007-w
  154. Jastrzębski, K.; Kula, P. Emerging technology for a green, sustainable energy-promising materials for hydrogen storage, from nanotubes to graphene—A review. Materials 2021, 14, 2499. doi: 10.3390/ma14102499
  155. United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sdgs.un.org/2030agenda (accessed on 10 October 2024).
  156. Colglazier, W. Sustainable development agenda: 2030. Science 2015, 349, 1048–1050. doi: 10.1126/science.aad2333
  157. Ali, A.A.; Al-Othman, A.; Tawalbeh, M.; Ali, A.; et al. Membrane Technologies for Sustainable Development Goals: A Critical Review of Bright Horizons. J. Environ. Chem. Eng. 2024, 13, 114998. doi: 10.1016/j.jece.2024.114998
  158. United Nations. Sustainable Development Goals: 17 Goals to Transform our World. Available online: https://www.un.org/en/exhibits/page/sdgs-17-goals-transform-world (accessed on 10 October 2024).
  159. United Nations General Assembly. United Nations General Assembly Resolution A. Antarct. Int. Law 2015, 15900, 1–35.
  160. Mensah, J. Sustainable development: Meaning, history, principles, pillars, and implications for human action: Literature review. Cogent Soc. Sci. 2019, 5, 1653531. doi: 10.1080/23311886.2019.1653531
  161. Cao, X.; Hayyat, M.; Henry, J. Green energy investment and technology innovation for carbon reduction: Strategies for achieving SDGs in the G7 countries. Int. J. Hydrogen Energy 2025, 114, 209–220. doi: 10.1016/j.ijhydene.2025.02.484
  162. Cleaning up water. Nat. Mater. 2008, 7, 341. https://doi.org/10.1038/nmat2178.
  163. Tiwari, A. Advanced Materials Research and Innovation Priorities for Accomplishing the Sustainable Development Goals. Adv. Mater. Lett. 2021, 12, 1–6. https://doi.org/10.5185/amlett.2021.061633.
  164. Kyoto Protocol. Framework Convention on Climate Change; UNFCCC: Bonn, Germany, 2010.
  165. Shukla, P.R.; Skeg, J.; Buendia, E.C.; et al. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable land Management, Food Security, and Greenhouse Gas Fluxes in terrestrial Ecosystems. 2019. Available online: https://www.ipcc.ch/site/assets/uploads/2019/11/SRCCL-Full-Report-Compiled-191128.pdf (accessed on 1 April 2025).
  166. Bishoge, O.K.; Zhang, L.; Mushi, W.G. The potential renewable energy for sustainable development in Tanzania: A review. Clean Technol. 2018, 1, 70–88. doi: 10.3390/cleantechnol1010006
  167. Büyüközkan, G.; Karabulut, Y.; Mukul, E. A novel renewable energy selection model for United Nations' sustainable development goals. Energy 2018, 165, 290–302. doi: 10.1016/j.energy.2018.08.215
  168. Bekhet, H.A.; Harun, N.H. Elasticity and causality among electricity generation from renewable energy and its determinants in Malaysia. Int. J. Energy Econ. Policy 2017, 7, 202–216.
  169. Mundaca, L.; Neij, L.; Markandya, A.; et al. Towards a Green Energy Economy? Assessing policy choices, strategies and transitional pathways. Appl. Energy 2016, 179, 1283–1292. doi: 10.1016/j.apenergy.2016.08.086
  170. Albright, R.; Cooley, S. A review of interventions proposed to abate impacts of ocean acidification on coral reefs. Reg. Stud. Mar. Sci. 2019, 29, 100612. doi: 10.1016/j.rsma.2019.100612
  171. Sen, S.; Ganguly, S. Opportunities, barriers and issues with renewable energy development–A discussion. Renew. Sustain. Energy Rev. 2017, 69, 1170–1181. doi: 10.1016/j.rser.2016.09.137
  172. Schainker, R.B. Executive overview: Energy storage options for a sustainable energy future. In Proceedings of the 2004 IEEE Power Engineering Society General Meeting, Denver, CO, USA, 6–10 June 2004; pp. 2309–2314.
  173. United Nations Development Programme. Goal 12: Responsible Consumption and Production; UNDP: New York, NY, USA, 2016.
  174. Sachs, J.D. The age of Sustainable Development; Columbia University Press: New York, NY, USA, 2015.
  175. Sachs, J.D. From millennium development goals to sustainable development goals. Lancet 2012, 379, 2206–2211. doi: 10.1016/S0140-6736(12)60685-0
  176. Martinot, E. Energy efficiency and renewable energy in Russia: Transaction barriers, market intermediation, and capacity building. Energy Policy 1998, 26, 905–915. doi: 10.1016/S0301-4215(98)00022-6
  177. Olabi, A.G.; Obaideen, K.; Abdelkareem, M.A.; et al. Wind energy contribution to the sustainable development goals: Case study on London array. Sustainability 2023, 15, 4641. doi: 10.3390/su15054641
  178. Watkins, K. Human Development Report 2007/8. Fighting Climate Change: Human Solidarity in a Divided World (November 27, 2007). UNDP-HDRO Human Development Report 2007. Available online: https://ssrn.com/abstract=2294689 (accessed on April 2025).
  179. IEA. Tracking SDG 7-The Energy Progress Report 2024; IEA: Paris, France, 2024.
  180. Sharma, R.; Jang, J.-G.; Hu, J.-W. Phase-change materials in concrete: Opportunities and challenges for sustainable construction and building materials. Materials 2022, 15, 335. doi: 10.3390/ma15010335
  181. Ahmed Ali, K.; Ahmad, M.I.; Yusup, Y. Issues, impacts, and mitigations of carbon dioxide emissions in the building sector. Sustainability 2020, 12, 7427. doi: 10.3390/su12187427
  182. Tian, J.; Culley, S.A.; Maier, H.R.; et al. Is renewable energy sustainable? Potential relationships between renewable energy production and the Sustainable Development Goals. NPJ Clim. Action 2024, 3, 35. doi: 10.1038/s44168-024-00120-6
  183. Gayen, D.; Chatterjee, R.; Roy, S. A review on environmental impacts of renewable energy for sustainable development. Int. J. Environ. Sci. Technol. 2024, 21, 5285–5310. doi: 10.1007/s13762-023-05380-z
  184. Alam, M.S.; Dinçer, H.; Kisswani, K.M.; et al. Analysis of green energy-oriented sustainable development goals for emerging economies. J. Open Innov. Technol. Mark. Complex. 2024, 10, 100368. doi: 10.1016/j.joitmc.2024.100368
  185. Bashiru, O.; Ochem, C.; Enyejo, L.A.; et al. The crucial role of renewable energy in achieving the sustainable development goals for cleaner energy. Glob. J. Eng. Technol. Adv. 2024, 19, 11–36. doi: 10.30574/gjeta.2024.19.3.0099
  186. Rezk, H.; Olabi, A.G.; Mahmoud, M.; et al. Metaheuristics and multi-criteria decision-making for renewable energy systems: Review, progress, bibliometric analysis, and contribution to the sustainable development pillars. Ain Shams Eng. J. 2024, 15, 102883. doi: 10.1016/j.asej.2024.102883
  187. Narain, R.S. Recent advancements and challenges in green material technology: Preparing today for nourishing tomorrow. Mater. Today Proc. 2023. https://doi.org/10.1016/j.matpr.2023.02.218.
  188. Ding, P.; Yang, D.; Yang, S.; et al. Stability of organic solar cells: Toward commercial applications. Chem. Soc. Rev. 2024, 53, 2350–2387. doi: 10.1039/D3CS00492A
  189. Gupta, D.; Boora, A.; Thakur, A.; et al. Green and sustainable synthesis of nanomaterials: Recent advancements and limitations. Environ. Res. 2023, 231, 116316. doi: 10.1016/j.envres.2023.116316
  190. Herrington, R.J. The Raw Material Challenge of Creating a Green Economy. Minerals 2024, 14, 204. doi: 10.3390/min14020204
  191. Popescu, C.; Dissanayake, H.; Mansi, E.; et al. Eco Breakthroughs: Sustainable Materials Transforming the Future of Our Planet. Sustainability 2024, 16, 10790. doi: 10.3390/su162310790
  192. Tiwari, A. Advancement of materials to sustainable & green world. Sustain. Dev. 2023, 2018, 2028. doi: 10.5185/amlett.2023.031724